MFCC C++实现与Python库可视化对比

2024-08-28 03:12

本文主要是介绍MFCC C++实现与Python库可视化对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MFCC C++实现与Python库对比

MFCC理论基础

在音频、语音信号处理领域,我们需要将信号转换成对应的语谱图(spectrogram),将语谱图上的数据作为信号的特征。语谱图的横轴x为时间,纵轴y为频率,(x,y)对应的数值代表在时间x时频率y的幅值。通常的语谱图其频率是线性分布的,但是人耳对频率的感受是对数的(logarithmic),即对低频段的变化敏感,对高频段的变化迟钝,所以线性分布的语谱图显然在特征提取上会出现“特征不够有用的情况”,因此梅尔语谱图应运而生。梅尔语谱图的纵轴频率和原频率经过如下公式互换:

img

img

其中f代表原本的频率,m代表转换后的梅尔频率,显然,当f很大时,m的变化趋于平缓。而梅尔倒频系数(MFCCs)是在得到梅尔语谱图之后进行余弦变换(DCT,一种类似于傅里叶变换的线性变换),然后取其中一部分系数即可。

信号预加重(pre-emphasis)

通常来讲语音/音频信号的高频分量强度较小,低频分量强度较大,信号预加重就是让信号通过一个高通滤波器,让信号的高低频分量的强度不至于相差太多。在时域中,对信号x[n]作如下操作:

img

a通常取一个很接近1的值,typical value为0.97或0.95。从时域公式来看,这是一个高通滤波器,我们从z变换的角度看一下滤波器的transfer function:

img

可以看出滤波器有一个极点0,和一个零点a。当频率为0时,z=1, 放大系数为(1-a)。当频率渐渐增大,放大系数不断变大,当频率到pi时,放大系数为(1+a)。离散域中,[0,pi]对应连续域中的0, fs/2。其中fs为采样率,在我们这里是44.1kHz。因此当频率到22000Hz时,放大系数为(1+a)

分帧(framing)

预处理完信号之后,要把原信号按时间分成若干个小块,一块就叫一帧(frame)。为啥要做这一步?因为原信号覆盖的时间太长,用它整个来做FFT,我们只能得到信号频率和强度的关系,而失去了时间信息。我们想要得到频率随时间变化的关系,所以将原信号分成若干帧,对每一帧作FFT(又称为短时FFT,因为我们只取了一小段时间),然后将得到的结果按照时间顺序拼接起来。这就是语谱图(spectrogram)的原理。

加窗(window)

分帧完毕之后,对每一帧加一个窗函数,以获得较好的旁瓣下降幅度。通常使用hamming window。为什么需要加窗?要注意,即使我们什么都不加,在分帧的这个过程中也相当于给信号加了矩形窗,学过离散滤波器设计的人应该知道,矩形窗的频谱有很大的旁瓣,时域中将窗函数和原函数相乘,相当于频域的卷积,矩形窗函数和原函数卷积之后,由于旁瓣很大,会造成原信号和加窗之后的对应部分的频谱相差很大,这就是频谱泄露。hamming window有较小的旁瓣,造成的spectral leakage也就较小。其中hamming window函数如下:

img

加窗分帧过程,实际是在时域上使用一个窗函数和原始信号进行相乘:

img

快速傅里叶变换(FFT)与能量谱(Power spectrum):

使用FFT的目的是将时域信号转换到频域。通过计算FFT结果的模平方实现信号的功率谱密度估计。其中平方实际对应二阶能量计算,目的是为了增强语音信号的特征表示,使MFCC对语音信号的特征更加敏感。

对于每一帧的加窗信号,进行N点FFT变换,也称短时傅里叶变换(STFT),N通常取256或512,然后用如下的公式计算能量谱:

img

其中二阶能量计算可表示为:

img

梅尔滤波器组与Filter Banks特征:

Mel刻度,这是一个能模拟人耳接收声音规律的刻度,人耳在接收声音时呈现非线性状态,对高频的更不敏感,因此Mel刻度在低频区分辨度较高,在高频区分辨度较低,与频率之间的换算关系为:

img

img

Mel滤波器组就是一系列的三角形滤波器,通常有40个或80个,在中心频率点响应值为1,在两边的滤波器中心点衰减到0,如下图所示:

img

具体公式表示为:

img

最后在能量谱上应用Mel滤波器组,其公式为:

img

取对数得到log mel-filter bank:

img

最后,根据以上描述,我们可以将Filter Banks特征分为以下几个步骤:

(1)确定滤波器组个数P
(2)根据采样率fs,DFT点数N,滤波器个数P,在梅尔域上等间隔的产生每个滤波器的起始频率和截止频率。
(3)将梅尔域上每个三角滤波器的起始、截止频率转换线性频率域,并对DFT之后的谱特征进行滤波,得到P个滤波器组能量,进行log操作,得到FBank特征。

离散余弦变换DCT与MFCC特征:

MFCC特征是在FBank特征的基础上继续进行离散余弦变换(DCT)变换。提取到的FBank特征,往往是高度相关的。因此可以继续用DCT变换,将这些相关的滤波器组系数进行压缩。通常取13维,扔掉的信息里面包含滤波器组系数快速变化部分。

img

C++实现

· 采用C++实现了MFCC算法,包括预加重滤波器、应用汉明窗、FFT、能量谱计算、Mel滤波器组特征提取以及DCT变换等核心功能。整体流程如下:

----------------------------初始化--------------------------

main.cpp(main)-> //入口函数,接收外部参数

mfcc.cpp(class MFCC)-> //初始化

--------------------------开始处理--------------------------

mfcc.cpp(process)-> //分帧

mfcc.cpp(processFrame)-> //处理单个窗口

mfcc.cpp(preEmphHam)-> //加汉明窗

mfcc.cpp(fft)-> //快速傅里叶变换

mfcc.cpp(computePowerSpec)-> //计算能量谱

mfcc.cpp(applymelFilterBanks)-> //提取Log Mel Filter Bank

mfcc.cpp(applyDct)-> //使用Dct将Log Mel Filter Bank转为MFCC

--------------------------保存结果--------------------------

mfcc.cpp(v_d_to_string) //保存

Python与C++的对比实现与可视化评估

o 我们对C++实现的MFCC算法进行了性能优化,确保了算法的高效运行,特别是在处理大规模数据集时。然后,为了验证C++实现的正确性,使用Python的librosa和torchaudio库进行了实现用于对比,并利用python_speech_features库作为额外的参考。最后,我们使用Matplotlib对MFCC特征进行了可视化展示,包括不同库实现的MFCC特征曲线对比,以及C++实现与Python实现的一致性验证。

特征一、二:

标题: fig:标题: fig:

特征三、四:

标题: fig:标题: fig:

特征五、六:

标题: fig:标题: fig:

实验结果显示,C++实现的MFCC特征与Python库(如librosa和torchaudio)的结果在趋势上基本一致,但在数值上存在微小差异,这主要归因于不同库在归一化和数值精度处理上的差异。

结论

本项目成功实现了MFCC特征提取算法的C++版本,并通过与其他流行库的对比验证了其准确性和有效性。C++实现在性能上显示出优势,尤其是在大规模数据处理上。此外,通过可视化评估,进一步证实了C++实现的MFCC特征与其他实现的一致性。

完整代码请访问github:CV-LS/mfcc_cpp_python (github.com)

如果您觉得这个项目对您有所帮助,请考虑给它一个星标(star)或 fork。您的支持是我们持续改进和发展的动力。

这篇关于MFCC C++实现与Python库可视化对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113565

相关文章

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co

python中列表list切分的实现

《python中列表list切分的实现》列表是Python中最常用的数据结构之一,经常需要对列表进行切分操作,本文主要介绍了python中列表list切分的实现,文中通过示例代码介绍的非常详细,对大家... 目录一、列表切片的基本用法1.1 基本切片操作1.2 切片的负索引1.3 切片的省略二、列表切分的高

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

通过Python脚本批量复制并规范命名视频文件

《通过Python脚本批量复制并规范命名视频文件》本文介绍了如何通过Python脚本批量复制并规范命名视频文件,实现自动补齐数字编号、保留原始文件、智能识别有效文件等功能,听过代码示例介绍的非常详细,... 目录一、问题场景:杂乱的视频文件名二、完整解决方案三、关键技术解析1. 智能路径处理2. 精准文件名

基于Python开发PDF转Doc格式小程序

《基于Python开发PDF转Doc格式小程序》这篇文章主要为大家详细介绍了如何基于Python开发PDF转Doc格式小程序,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用python实现PDF转Doc格式小程序以下是一个使用Python实现PDF转DOC格式的GUI程序,采用T

Python使用PIL库将PNG图片转换为ICO图标的示例代码

《Python使用PIL库将PNG图片转换为ICO图标的示例代码》在软件开发和网站设计中,ICO图标是一种常用的图像格式,特别适用于应用程序图标、网页收藏夹图标等场景,本文将介绍如何使用Python的... 目录引言准备工作代码解析实践操作结果展示结语引言在软件开发和网站设计中,ICO图标是一种常用的图像

C++ Primer 标准库vector示例详解

《C++Primer标准库vector示例详解》该文章主要介绍了C++标准库中的vector类型,包括其定义、初始化、成员函数以及常见操作,文章详细解释了如何使用vector来存储和操作对象集合,... 目录3.3标准库Vector定义和初始化vector对象通列表初始化vector对象创建指定数量的元素值

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring