albert每两层共享参数

2024-08-28 01:32
文章标签 参数 共享 两层 albert

本文主要是介绍albert每两层共享参数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、albert的原始实现(brightmart实现)

def transformer_model(input_tensor,attention_mask=None,hidden_size=768,num_hidden_layers=12,num_attention_heads=12,intermediate_size=3072,intermediate_act_fn=gelu,hidden_dropout_prob=0.1,attention_probs_dropout_prob=0.1,initializer_range=0.02,do_return_all_layers=False,share_parameter_across_layers=True):"""Multi-headed, multi-layer Transformer from "Attention is All You Need".This is almost an exact implementation of the original Transformer encoder.See the original paper:https://arxiv.org/abs/1706.03762Also see:https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.pyArgs:input_tensor: float Tensor of shape [batch_size, seq_length, hidden_size].attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length,seq_length], with 1 for positions that can be attended to and 0 inpositions that should not be.hidden_size: int. Hidden size of the Transformer.num_hidden_layers: int. Number of layers (blocks) in the Transformer.num_attention_heads: int. Number of attention heads in the Transformer.intermediate_size: int. The size of the "intermediate" (a.k.a., feedforward) layer.intermediate_act_fn: function. The non-linear activation function to applyto the output of the intermediate/feed-forward layer.hidden_dropout_prob: float. Dropout probability for the hidden layers.attention_probs_dropout_prob: float. Dropout probability of the attentionprobabilities.initializer_range: float. Range of the initializer (stddev of truncatednormal).do_return_all_layers: Whether to also return all layers or just the finallayer.Returns:float Tensor of shape [batch_size, seq_length, hidden_size], the finalhidden layer of the Transformer.Raises:ValueError: A Tensor shape or parameter is invalid."""if hidden_size % num_attention_heads != 0:raise ValueError("The hidden size (%d) is not a multiple of the number of attention ""heads (%d)" % (hidden_size, num_attention_heads))attention_head_size = int(hidden_size / num_attention_heads)input_shape = get_shape_list(input_tensor, expected_rank=3)batch_size = input_shape[0]seq_length = input_shape[1]input_width = input_shape[2]# The Transformer performs sum residuals on all layers so the input needs# to be the same as the hidden size.if input_width != hidden_size:raise ValueError("The width of the input tensor (%d) != hidden size (%d)" %(input_width, hidden_size))# We keep the representation as a 2D tensor to avoid re-shaping it back and# forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on# the GPU/CPU but may not be free on the TPU, so we want to minimize them to# help the optimizer.prev_output = reshape_to_matrix(input_tensor)all_layer_outputs = []for layer_idx in range(num_hidden_layers):if share_parameter_across_layers:name_variable_scope = "layer_shared"else:name_variable_scope = "layer_%d" % layer_idx# share all parameters across layers. add by brightmart, 2019-09-28. previous it is like this: "layer_%d" % layer_idxwith tf.variable_scope(name_variable_scope,reuse=True if (share_parameter_across_layers and layer_idx > 0) else False):layer_input = prev_outputwith tf.variable_scope("attention"):attention_heads = []with tf.variable_scope("self"):attention_head = attention_layer(from_tensor=layer_input,to_tensor=layer_input,attention_mask=attention_mask,num_attention_heads=num_attention_heads,size_per_head=attention_head_size,attention_probs_dropout_prob=attention_probs_dropout_prob,initializer_range=initializer_range,do_return_2d_tensor=True,batch_size=batch_size,from_seq_length=seq_length,to_seq_length=seq_length)attention_heads.append(attention_head)attention_output = Noneif len(attention_heads) == 1:attention_output = attention_heads[0]else:# In the case where we have other sequences, we just concatenate# them to the self-attention head before the projection.attention_output = tf.concat(attention_heads, axis=-1)# Run a linear projection of `hidden_size` then add a residual# with `layer_input`.with tf.variable_scope("output"):attention_output = tf.layers.dense(attention_output,hidden_size,kernel_initializer=create_initializer(initializer_range))attention_output = dropout(attention_output, hidden_dropout_prob)attention_output = layer_norm(attention_output + layer_input)# The activation is only applied to the "intermediate" hidden layer.with tf.variable_scope("intermediate"):intermediate_output = tf.layers.dense(attention_output,intermediate_size,activation=intermediate_act_fn,kernel_initializer=create_initializer(initializer_range))# Down-project back to `hidden_size` then add the residual.with tf.variable_scope("output"):layer_output = tf.layers.dense(intermediate_output,hidden_size,kernel_initializer=create_initializer(initializer_range))layer_output = dropout(layer_output, hidden_dropout_prob)layer_output = layer_norm(layer_output + attention_output)prev_output = layer_outputall_layer_outputs.append(layer_output)if do_return_all_layers:final_outputs = []for layer_output in all_layer_outputs:final_output = reshape_from_matrix(layer_output, input_shape)final_outputs.append(final_output)return final_outputselse:final_output = reshape_from_matrix(prev_output, input_shape)return final_output

2、变更为每两层共享参数

在tensorflow中,为了 节约变量存储空间 ,我们常常需要通过共享 变量作用域(variable_scope) 来实现 共享变量 。

大家比较常用也比较笨的一种方法是,在重复使用(即 非第一次使用)时,设置 reuse=True 来 再次调用 该共享变量作用域(variable_scope)。对于未初始化的变量,当碰到reuse=True时,会报错;参考参数共享的博客https://blog.csdn.net/qq_35203425/article/details/82469348;使用 tf.Variable_scope(…, reuse=tf.AUTO_REUSE) 的方法来一次性对variable_scope进行reuse,现将代码模板总结如下:

 

def transformer_model(input_tensor,attention_mask=None,hidden_size=768,num_hidden_layers=12,num_attention_heads=12,intermediate_size=3072,intermediate_act_fn=gelu,hidden_dropout_prob=0.1,attention_probs_dropout_prob=0.1,initializer_range=0.02,do_return_all_layers=False,share_parameter_across_layers=True):"""Multi-headed, multi-layer Transformer from "Attention is All You Need".This is almost an exact implementation of the original Transformer encoder.See the original paper:https://arxiv.org/abs/1706.03762Also see:https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.pyArgs:input_tensor: float Tensor of shape [batch_size, seq_length, hidden_size].attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length,seq_length], with 1 for positions that can be attended to and 0 inpositions that should not be.hidden_size: int. Hidden size of the Transformer.num_hidden_layers: int. Number of layers (blocks) in the Transformer.num_attention_heads: int. Number of attention heads in the Transformer.intermediate_size: int. The size of the "intermediate" (a.k.a., feedforward) layer.intermediate_act_fn: function. The non-linear activation function to applyto the output of the intermediate/feed-forward layer.hidden_dropout_prob: float. Dropout probability for the hidden layers.attention_probs_dropout_prob: float. Dropout probability of the attentionprobabilities.initializer_range: float. Range of the initializer (stddev of truncatednormal).do_return_all_layers: Whether to also return all layers or just the finallayer.Returns:float Tensor of shape [batch_size, seq_length, hidden_size], the finalhidden layer of the Transformer.Raises:ValueError: A Tensor shape or parameter is invalid."""if hidden_size % num_attention_heads != 0:raise ValueError("The hidden size (%d) is not a multiple of the number of attention ""heads (%d)" % (hidden_size, num_attention_heads))attention_head_size = int(hidden_size / num_attention_heads)input_shape = get_shape_list(input_tensor, expected_rank=3)batch_size = input_shape[0]seq_length = input_shape[1]input_width = input_shape[2]# The Transformer performs sum residuals on all layers so the input needs# to be the same as the hidden size.if input_width != hidden_size:raise ValueError("The width of the input tensor (%d) != hidden size (%d)" %(input_width, hidden_size))# We keep the representation as a 2D tensor to avoid re-shaping it back and# forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on# the GPU/CPU but may not be free on the TPU, so we want to minimize them to# help the optimizer.prev_output = reshape_to_matrix(input_tensor)all_layer_outputs = []for layer_idx in range(num_hidden_layers):if share_parameter_across_layers:#name_variable_scope = "layer_shared"name_variable_scope = "layer_%d" % (layer_idx//2)else:name_variable_scope = "layer_%d" % layer_idx# share all parameters across layers. add by brightmart, 2019-09-28. previous it is like this: "layer_%d" % layer_idxwith tf.variable_scope(name_variable_scope,reuse=tf.AUTO_REUSE if (share_parameter_across_layers and layer_idx > 0) else False):layer_input = prev_outputwith tf.variable_scope("attention"):attention_heads = []with tf.variable_scope("self"):attention_head = attention_layer(from_tensor=layer_input,to_tensor=layer_input,attention_mask=attention_mask,num_attention_heads=num_attention_heads,size_per_head=attention_head_size,attention_probs_dropout_prob=attention_probs_dropout_prob,initializer_range=initializer_range,do_return_2d_tensor=True,batch_size=batch_size,from_seq_length=seq_length,to_seq_length=seq_length)attention_heads.append(attention_head)attention_output = Noneif len(attention_heads) == 1:attention_output = attention_heads[0]else:# In the case where we have other sequences, we just concatenate# them to the self-attention head before the projection.attention_output = tf.concat(attention_heads, axis=-1)# Run a linear projection of `hidden_size` then add a residual# with `layer_input`.with tf.variable_scope("output"):attention_output = tf.layers.dense(attention_output,hidden_size,kernel_initializer=create_initializer(initializer_range))attention_output = dropout(attention_output, hidden_dropout_prob)attention_output = layer_norm(attention_output + layer_input)# The activation is only applied to the "intermediate" hidden layer.with tf.variable_scope("intermediate"):intermediate_output = tf.layers.dense(attention_output,intermediate_size,activation=intermediate_act_fn,kernel_initializer=create_initializer(initializer_range))# Down-project back to `hidden_size` then add the residual.with tf.variable_scope("output"):layer_output = tf.layers.dense(intermediate_output,hidden_size,kernel_initializer=create_initializer(initializer_range))layer_output = dropout(layer_output, hidden_dropout_prob)layer_output = layer_norm(layer_output + attention_output)prev_output = layer_outputall_layer_outputs.append(layer_output)if do_return_all_layers:final_outputs = []for layer_output in all_layer_outputs:final_output = reshape_from_matrix(layer_output, input_shape)final_outputs.append(final_output)return final_outputselse:final_output = reshape_from_matrix(prev_output, input_shape)return final_output

 

3、权值共享的优点

1). 减少运算只是锦上添花

权重共享可以减少运算

2). 权重共享的本质是特征提取

之前说到权重就是模板,我们按照一定的模板来与样本进行比对,看看有没有与模板一致的外在表现(特征)

3). 权重共享使得模型泛化

普通的神经网络输入是固定的,而权重共享可以使得输入不固定。

比如很多张图像,每张图像上有个人脸,但是人脸在图像的不同位置,或者图像的大小也不相同,此时权重共享可以全图扫描,搜索人脸,进而把特征提取出来。

再如RNN做语义分析,两句话:我去年去了北京;去年我和父母去了北京,这其实意思差不多,但文字位置不同,句子长度也不同。

权重共享使得模型能够处理一个连续序列的特征,而不管输入的序列总长度是多少。

当这个连续序列在样本的不同位置时,依然能够识别,而不是学习每个位置的规则,这不仅抓住了不同特征之间的连续性,也减少了学习规则

 

参考博客

https://blog.csdn.net/qq_35203425/article/details/82469348 (tf.AUTO_REUSE实现作用域共享)

https://zhuanlan.zhihu.com/p/103226488 (bert各个模块详解,我觉得非常详细的一篇博客,rewrite)

https://www.cnblogs.com/yanshw/p/10483014.html (再谈权重共享,这篇博客论证了权重共享是必须的)

 

 

这篇关于albert每两层共享参数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113343

相关文章

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

redis中session会话共享的三种方案

《redis中session会话共享的三种方案》本文探讨了分布式系统中Session共享的三种解决方案,包括粘性会话、Session复制以及基于Redis的集中存储,具有一定的参考价值,感兴趣的可以了... 目录三种解决方案粘性会话(Sticky Sessions)Session复制Redis统一存储Spr

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

一文详解PostgreSQL复制参数

《一文详解PostgreSQL复制参数》PostgreSQL作为一款功能强大的开源关系型数据库,其复制功能对于构建高可用性系统至关重要,本文给大家详细介绍了PostgreSQL的复制参数,需要的朋友可... 目录一、复制参数基础概念二、核心复制参数深度解析1. max_wal_seChina编程nders:WAL