Ubuntu18.04LTS下基于 Anaconda3 安装 Caffe-GPU及 Python3.6 + Pycharm + Mnist例子教程(超详细)

本文主要是介绍Ubuntu18.04LTS下基于 Anaconda3 安装 Caffe-GPU及 Python3.6 + Pycharm + Mnist例子教程(超详细),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PDF版本请点击此处下载

1.    配置Anaconda3

1.1.  下载安装包

官网下载地址:https://www.anaconda.com/download/#linux


1.2.  安装

下载完之后是后缀.sh文件

在终端输入:bash Anaconda3-5.0.0.1-Linux-x86_64.sh

2.    切换默认Python版本

2.1.  查看Python版本

终端输入python查看版本,如果默认不是python3,则在终端输入:

sudo update-alternatives --install /usr/bin/python python /usr/bin/python2 100

sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 150  

执行完上述两行命令之后在终端输入python,如果第一行信息是3.6,则成功。效果图如下:


如果要切换到Python2,执行:

sudo update-alternatives --config python

2.2.  添加环境变量

将Python添加到环境变量中。

如果在安装Anaconda的过程中没有将安装路径添加到系统环境变量中,需要在安装后手工添加。

# 打开profile文件

$sudo gedit /etc/profile

# 在文件末尾处添加

exportPATH=/home/liguangyao/anaconda3/bin:$PATH

其中,将“/home/liguangyao/anaconda3/bin”替换为你实际的安装路径,然后保存。


2.3.  使环境变量生效

让etc/profile文件修改后立即生效,有以下三种方法:

# 方法一 (注意:.和/etc/profile之间有空格)

. /etc/profile 

# 方法二:在终端输入

source /etc/profile

# 方法三:在终端输入

source ~/.bashrc

然后重启系统,打开终端,输入Python,出现以下界面,表明设置成功。


也可以在终端输入ecoh $PATH查看已有的环境变量 ,确认输出是否已经有Anaconda路径了。

3.    安装Pycharm

参考Ubuntu安装Pycharm并添加系统快捷启动图标

4.    Cuda9.0安装

4.1. NVIDIA驱动安装

Ubuntu18.04自带了NVIDIA驱动,但是它没有安装完整,不能在终端使用nvidia-smi命令查看,在之后的CUDA编译测试里面也会出现问题,因此需要重新安装。重新安装的方式如下:

# 首先,检测你的NVIDIA图形卡和推荐的驱动程序的模型

ubuntu-drivers devices

从中可以看到,这里有一个设备是Quadro K2000,对应的驱动是NVIDIA -390和340,系统推荐的安装390版本的驱动。有两种方法:

方法一、选择安装所有推荐的驱动

sudo ubuntu-drivers autoinstall

方法二、只安装其中一个驱动

sudo apt install nvidia-390

笔者选择第一种方式,执行完命令后,在终端输入:nvidia-smi 可以得到相关信息。

4.2. 降级GCC

因为Ubuntu18.04默认gcc7.0,而CUDA9.0只支持gcc6.0及以下版本,因此需要降级,笔者选择降级到的版本是gcc5.5版本。

# 首先查看自己的版本

gcc –version

笔者机器显示7.3.0,因此降级版本并激活。


# 在终端输入

sudo apt-get install gcc-5 g++-5

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 50

sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 50

# 这时候再在终端输入

gcc –version

如果显示是5.5版本则OK。如果出现其他错误未降级情况,请自行百度/Google查看解决方案。

4.3. 依赖库的安装

# 在终端输入

sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev

sudo apt-get install libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev


成功安装完依赖库!

4.4. 安装Cuda9.0

官网地址:点击此处进入



下载后存放的目录需要记住。

#在安装包存放目录处打开终端输入

Sudo dpkg -i cuda-repo-ubuntu1704-9-0-local_9.0.176-1_amd64.deb


sudo apt-key add /var/cuda-repo-9-0-local/7fa2af80.pub


sudo dpkg -i cuda-repo-ubuntu1704-9-0-local-cublas-performance-update_1.0-1_amd64.deb

sudo dpkg -i cuda-repo-ubuntu1704-9-0-local-cublas-performance-update-2_1.0-1_amd64.deb


Sudo apt-get update

#这一步可能会出现如下错误:

The following packages have unmet dependencies:

cuda : Depends: cuda-9-0 (>= 9.0.176) but it is not going to beinstalled

E: Unable to correct problems, you have held broken packages.

解决方法参见博客:Ubuntu18.04 LTS下Caffe-GPU版本安装常见错误

#在终端继续执行:

Sudo apt-get install cuda

在/usr/local目录下可以看到cuda和cuda-9.0两个文件夹,表面安装成功,接下来进行环境变量配置。

4.5. 环境配置

完成以上的步骤以后一定要进行环境的配置。步骤如下:

#打开终端输入

sudo gedit ~/.bashrc

# 会弹出一个可写的配置文件,在末尾把以下配置写入并保存

export CUDA_HOME=/usr/local/cuda-9.0

export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64:/usr/local/cuda-9.0/extras/CUPTI/lib64:$LD_LIBRARY_PATHs

export PATH=/usr/local/cuda-9.0/bin:$PATH

export LD_LIBRARY_PATH="/usr/local/cuda-9.0/lib64:/usr/local/cuda-9.0/extras/CUPTI/lib64:/usr/local/cuda-9.0/lib64:/usr/local/cuda-9.0/lib64"


# 最后执行

source ~/.bashrc

重启电脑。

4.6. 安装测试

在安装的时候也相应安装了一些cuda的一些例子,可以进入例子的文件夹然后使用make命令执行。

从网上找了两个例子,例一:

# 第一步,进入例子文件

cd /usr/local/cuda-9.0/samples/1_Utilities/deviceQuery

# 第二步,执行make命令

sudo make

# 第三步,运行Demo

./deviceQuery

如果结果有GPU的信息,说明安装成功。


例二:

# 进入例子对应的文件夹

 cd /usr/local/cuda/samples/5_Simulations/fluidsGL

# 执行make

 sudo make clean && sudo make

# 运行

 ./fluidsGL


自带例子测试通过,Cuna9.0安装配置完成!

5.    CuDnn7.0安装

官网下载地址:点击这里(需要注册个账号):

为适应Cudn9.0,笔者下载的是CuDnnv7.0.4 (Nov 13, 2017), for CUDA 9.0。笔者下载完的CuDnn是.solitairetheme8格式的文件。



# 解压

tar -xvzf cudnn-9.0-linux-x64-v7.solitairetheme8

# 在终端输入

sudocp cuda/include/cudnn.h   /usr/local/cuda/include

# 注意,解压后的文件夹名称为cuda ,将对应文件复制到 /usr/local中的cuda内

sudocp cuda/lib64/libcudnn*    /usr/local/cuda/lib64 

sudochmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

此处Cudnn安装完成.

# 在终端输入(此处的V是大写)

nvcc –V

安装成功!(若没有显示,可以重启电脑)

6.    Caffe-GPU安装

# 在终端输入

sudo apt install caffe-cuda

6.1.基本依赖库的安装

# 在终端输入

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev

sudo apt-get install libhdf5-serial-dev protobuf-compiler

sudo apt-get install --no-install-recommends libboost-all-dev

sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev

sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

6.2.配置

# 首先我们要从GitHub的远端下载caffe的源码

git clone https://github.com/BVLC/caffe.git


cd caffe sudo cp Makefile.config.example Makefile.config

sudo gedit Makefile.config

进入caffe根目录,用编辑器打开Makefile.config文件。笔者选择SublimeText。

6.2.1.修改Makefile.config的配置文件

# 将第5行注释去除

USE_CUDNN:= 1

# 将第21行注释去除

 OPENCV_VERSION := 3

将第37和38行注释或者删除

修改后如图所示

将第51行BLAS:= atlas注销,换成BLAS := open

将Python2环境注销,换成Anaconda3下的Python环境

将PYTHON_LIB:= /usr/lib注释

取消PYTHON_LIB:= $(ANACONDA_HOME)/lib的注释

INCLUDE_DIRS :=$(PYTHON_INCLUDE) /usr/local/include /usr/local/hdf5/include

LIBRARY_DIRS :=$(PYTHON_LIB) /usr/local/lib /usr/lib /usr/local/hdf5/lib

删除以下黄色背景操作
6.2.2.修改Makefile文件

在终端输入:sudo gedit Makefile

# 这行去掉  

NVCCFLAGS+= -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)

# 添加这行

NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX)-Xcompiler -fPIC $(COMMON_FLAGS)  

6.3.    Caffe源码中安装Python的必要项

# 在终端输入

cd /home/liguangyao/programming/caffe/python 

for req in $(cat requirements.txt); do pip install $req; done

6.4.   编译

# 进入caffe的根目录下

cd /home/liguangyao/Programming/caffe

sudo make clean

sudo make all -j4 (-j4表示使用4核处理器执行当前指令)


sudo make test -j4 (最好加上sudo防止有些文件的访问权限不够)

sudo make runtest -j4  

此步可能会报错,解决方法参见博客:Ubuntu18.04 LTS下Caffe-GPU版本安装常见错误


sudo make pycaffe -j4(配置pycaffe


返回上一目录,输入Python测试


Congratulations!Caffe-GPU编译成功!

7.    MNIST 模型

#进入Caffe根目录

 cd /home/liguangyao/Programming/caffe

7.1. 数据集准备

#下载数据集

sudo ./data/mnist/get_mnist.sh

#转换数据格式

sudo ./examples/mnist/create_mnist.sh

7.2. 数据集训练

#训练

sudo ./examples/mnist/train_lenet.sh

#训练完成后如下所示:


7.3. 数据集测试

有三种接口可以进行数据集测试,分别是命令行、Python和MATLAB,笔者采用命令行进行测试。

在在caffe根目录下创建文件。在终端输入:

touch test_lenet.sh

sudo gedit test_lenet.sh

在文件中添加:

./build/tools/caffe.bin test -modelexamples/mnist/lenet_train_test.prototxt -weightsexamples/mnist/lenet_iter_10000.caffemodel -iterations 100

#在终端执行

sudo sh test_lenent.sh

Congratulations!测试成功!至此,Caffe-GPU版本安装测试完毕!

可以尽情的开启Caffe深度学习之旅了!

8.    参考资料

1. 虚拟机中ubuntu17.04+python3.6+anaconda3配置caffe(CPU)

2. linux配置Anacondapython集成环境

3. Ubuntu安装Pycharm并添加系统快捷启动图标

4. ubuntu17.04以上版本安装gpu版caffe

5. 真实机下ubuntu 18.04安装GPU +CUDA+cuDNN以及其版本选择

6. Ubuntu18.04+CUDA9.0+cuDNN7.1.3+TensorFlow1.8安装总结

7. 最全TensorFlow-gpu-1.8/1.3+Ubuntu18.04+CUDA9.0+cudnn7.0+Anaconda+pycharm+libcublas.so.9.0缺少解决办法

8. Ubuntu14.04下安装tensorflow1.7 (Cuda9.0+cudnn7.0)

9. Ubuntu18.04深度学习GPU环境配置

10. 【CPU + GPU版】Ubuntu16.04 + caffe + Anaconda2 + OpenCV3.x(附:问题集锦+测试案例)

11. ubuntu 17.10+ caffe(CPU)环境搭建

这篇关于Ubuntu18.04LTS下基于 Anaconda3 安装 Caffe-GPU及 Python3.6 + Pycharm + Mnist例子教程(超详细)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112617

相关文章

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Web实现类似Excel表格锁定功能实战教程

《JavaWeb实现类似Excel表格锁定功能实战教程》本文将详细介绍通过创建特定div元素并利用CSS布局和JavaScript事件监听来实现类似Excel的锁定行和列效果的方法,感兴趣的朋友跟随... 目录1. 模拟Excel表格锁定功能2. 创建3个div元素实现表格锁定2.1 div元素布局设计2.

HTML img标签和超链接标签详细介绍

《HTMLimg标签和超链接标签详细介绍》:本文主要介绍了HTML中img标签的使用,包括src属性(指定图片路径)、相对/绝对路径区别、alt替代文本、title提示、宽高控制及边框设置等,详细内容请阅读本文,希望能对你有所帮助... 目录img 标签src 属性alt 属性title 属性width/h

SpringBoot连接Redis集群教程

《SpringBoot连接Redis集群教程》:本文主要介绍SpringBoot连接Redis集群教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 依赖2. 修改配置文件3. 创建RedisClusterConfig4. 测试总结1. 依赖 <de

CSS3打造的现代交互式登录界面详细实现过程

《CSS3打造的现代交互式登录界面详细实现过程》本文介绍CSS3和jQuery在登录界面设计中的应用,涵盖动画、选择器、自定义字体及盒模型技术,提升界面美观与交互性,同时优化性能和可访问性,感兴趣的朋... 目录1. css3用户登录界面设计概述1.1 用户界面设计的重要性1.2 CSS3的新特性与优势1.