【GAN】DCGAN

2024-08-27 18:38
文章标签 gan dcgan

本文主要是介绍【GAN】DCGAN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

生成式对抗网络(GAN)是近年来大热的深度学习模型。最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN。

本文主要分为三个部分:

  1. 介绍原始的GAN的原理 
  2. 同样非常重要的DCGAN的原理 
  3. 如何在Tensorflow跑DCGAN的代码,生成如题图所示的动漫头像,附送数据集哦 :-)

一、GAN原理介绍

说到GAN第一篇要看的paper当然是Ian Goodfellow大牛的Generative Adversarial Networks(arxiv:https://arxiv.org/abs/1406.2661),这篇paper算是这个领域的开山之作。

GAN的基本原理其实非常简单,这里以生成图片为例进行说明。假设我们有两个网络,G(Generator)和D(Discriminator)。正如它的名字所暗示的那样,它们的功能分别是:

  • G是一个生成图片的网络,它接收一个随机的噪声z,通过这个噪声生成图片,记做G(z)。
  • D是一个判别网络,判别一张图片是不是“真实的”。它的输入参数是x,x代表一张图片,输出D(x)代表x为真实图片的概率,如果为1,就代表100%是真实的图片,而输出为0,就代表不可能是真实的图片。

在训练过程中,生成网络G的目标就是尽量生成真实的图片去欺骗判别网络D。而D的目标就是尽量把G生成的图片和真实的图片分别开来。这样,G和D构成了一个动态的“博弈过程”。

最后博弈的结果是什么?在最理想的状态下,G可以生成足以“以假乱真”的图片G(z)。对于D来说,它难以判定G生成的图片究竟是不是真实的,因此D(G(z)) = 0.5。

 

这样我们的目的就达成了:我们得到了一个生成式的模型G,它可以用来生成图片。

以上只是大致说了一下GAN的核心原理,如何用数学语言描述呢?这里直接摘录论文里的公式:

简单分析一下这个公式:

 

  • 整个式子由两项构成。x表示真实图片,z表示输入G网络的噪声,而G(z)表示G网络生成的图片。
  • D(x)表示D网络判断真实图片是否真实的概率(因为x就是真实的,所以对于D来说,这个值越接近1越好)。而D(G(z))是D网络判断G生成的图片的是否真实的概率。
  • G的目的:上面提到过,D(G(z))是D网络判断G生成的图片是否真实的概率,G应该希望自己生成的图片“越接近真实越好”。也就是说,G希望D(G(z))尽可能得大,这时V(D, G)会变小。因此我们看到式子的最前面的记号是min_G。
  • D的目的:D的能力越强,D(x)应该越大,D(G(x))应该越小。这时V(D,G)会变大。因此式子对于D来说是求最大(max_D)

下面这幅图片很好地描述了这个过程:

那么如何用随机梯度下降法训练D和G?论文中也给出了算法:

这里红框圈出的部分是我们要额外注意的。第一步我们训练D,D是希望V(G, D)越大越好,所以是加上梯度(ascending)。第二步训练G时,V(G, D)越小越好,所以是减去梯度(descending)。整个训练过程交替进行。

三、DCGAN in Tensorflow

好了,上面说了一通原理,下面说点有意思的实践部分的内容。

DCGAN的原作者用DCGAN生成LSUN的卧室图片,这并不是特别有意思。之前在网上看到一篇文章 Chainerで顔イラストの自動生成 - Qiita ,是用DCGAN生成动漫人物头像的,效果如下:

这是个很有趣的实践内容。可惜原文是用Chainer做的,这个框架使用的人不多。下面我们就在Tensorflow中复现这个结果。

1. 原始数据集的搜集

首先我们需要用爬虫爬取大量的动漫图片,原文是在这个网站:http://safebooru.donmai.us/中爬取的。我尝试的时候,发现在我的网络环境下无法访问这个网站,于是我就写了一个简单的爬虫爬了另外一个著名的动漫图库网站:konachan.net - Konachan.com Anime Wallpapers。

爬虫代码如下:

import requests
from bs4 import BeautifulSoup
import os
import tracebackdef download(url, filename):if os.path.exists(filename):print('file exists!')returntry:r = requests.get(url, stream=True, timeout=60)r.raise_for_status()with open(filename, 'wb') as f:for chunk in r.iter_content(chunk_size=1024):if chunk:  # filter out keep-alive new chunksf.write(chunk)f.flush()return filenameexcept KeyboardInterrupt:if os.path.exists(filename):os.remove(filename)raise KeyboardInterruptexcept Exception:traceback.print_exc()if os.path.exists(filename):os.remove(filename)if os.path.exists('imgs') is False:os.makedirs('imgs')start = 1
end = 8000
for i in range(start, end + 1):url = 'http://konachan.net/post?page=%d&tags=' % ihtml = requests.get(url).textsoup = BeautifulSoup(html, 'html.parser')for img in soup.find_all('img', class_="preview"):target_url = 'http:' + img['src']filename = os.path.join('imgs', target_url.split('/')[-1])download(target_url, filename)print('%d / %d' % (i, end))

这个爬虫大概跑了一天,爬下来12万张图片,大概是这样的:

可以看到这里面的图片大多数比较杂乱,还不能直接作为数据训练,我们需要用合适的工具,截取人物的头像进行训练。

2. 头像截取

截取头像和原文一样,直接使用github上一个基于opencv的工具:nagadomi/lbpcascade_animeface。

简单包装下代码:

import cv2
import sys
import os.path
from glob import globdef detect(filename, cascade_file="lbpcascade_animeface.xml"):if not os.path.isfile(cascade_file):raise RuntimeError("%s: not found" % cascade_file)cascade = cv2.CascadeClassifier(cascade_file)image = cv2.imread(filename)gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)gray = cv2.equalizeHist(gray)faces = cascade.detectMultiScale(gray,# detector optionsscaleFactor=1.1,minNeighbors=5,minSize=(48, 48))for i, (x, y, w, h) in enumerate(faces):face = image[y: y + h, x:x + w, :]face = cv2.resize(face, (96, 96))save_filename = '%s-%d.jpg' % (os.path.basename(filename).split('.')[0], i)cv2.imwrite("faces/" + save_filename, face)if __name__ == '__main__':if os.path.exists('faces') is False:os.makedirs('faces')file_list = glob('imgs/*.jpg')for filename in file_list:detect(filename)

截取头像后的人物数据:

这样就可以用来训练了!

 

如果你不想从头开始爬图片,可以直接使用我爬好的头像数据(275M,约5万多张图片):https://pan.baidu.com/s/1eSifHcA 提取码:g5qa

3. 训练

DCGAN在Tensorflow中已经有人造好了轮子:carpedm20/DCGAN-tensorflow,我们直接使用这个代码就可以了。

不过原始代码中只提供了有限的几个数据库,如何训练自己的数据?在model.py中我们找到读数据的几行代码:

 if config.dataset == 'mnist':data_X, data_y = self.load_mnist()else:data = glob(os.path.join("./data", config.dataset, "*.jpg"))

这样读数据的逻辑就很清楚了,我们在data文件夹中再新建一个anime文件夹,把图片直接放到这个文件夹里,运行时指定--dataset anime即可。

运行指令(参数含义:指定生成的图片的尺寸为48x48,我们图片的大小是96x96,跑300个epoch):

python main.py --image_size 96 --output_size 48 --dataset anime --is_crop True --is_train True --epoch 300 --input_fname_pattern "*.jpg"

4. 结果

第1个epoch跑完(只有一点点轮廓):

 

第5个epoch之后的结果:

第10个epoch:

200个epoch,仔细看有些图片确实是足以以假乱真的:

题图是我从第300个epoch生成的。

四、总结和后续

简单介绍了一下GAN和DCGAN的原理。以及如何使用Tensorflow做一个简单的生成图片的demo。

一些后续阅读:

  • Ian Goodfellow对GAN一系列工作总结的ppt,确实精彩,推荐:独家 | GAN之父NIPS 2016演讲现场直击:全方位解读生成对抗网络的原理及未来(附PPT)
  • GAN论文汇总,包含code:zhangqianhui/AdversarialNetsPapers

这篇关于【GAN】DCGAN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112467

相关文章

生成对抗网络(GAN网络)

Generative Adversarial Nets 生成对抗网络GAN交互式可视化网站 1、GAN 基本结构 GAN 模型其实是两个网络的组合: 生成器(Generator) 负责生成模拟数据; 判别器(Discriminator) 负责判断输入的数据是真实的还是生成的。 生成器要不断优化自己生成的数据让判别网络判断不出来,判别器也要优化自己让自己判断得更准确。 二者关系形成

深度学习--对抗生成网络(GAN, Generative Adversarial Network)

对抗生成网络(GAN, Generative Adversarial Network)是一种深度学习模型,由Ian Goodfellow等人在2014年提出。GAN主要用于生成数据,通过两个神经网络相互对抗,来生成以假乱真的新数据。以下是对GAN的详细阐述,包括其概念、作用、核心要点、实现过程、代码实现和适用场景。 1. 概念 GAN由两个神经网络组成:生成器(Generator)和判别器(D

基于 AC 驱动的电容结构 GaN LED 模型开发和应用

随着芯片尺寸减小,微小尺寸GaN 基 Micro LED 显示面临着显示与驱动高密度集成的难题,传统直流(DC)驱动技术会导致结温上升,降低器件寿命。南京大学团队创新提出交流(AC)驱动的单电极 LED(SC-LED)结构【见图1】,利用隧穿结(TJ)降低器件的交流工作电压。为了深入理解该器件的工作原理,我司技术团队开发了基于 AC 驱动的物理解析模型,揭示了隧穿结降低器件工作电压的

深入理解GAN网络

Generative Adversarial Networks创造性地提出了对抗训练来代替人工指定的loss。之前的文章初步理解了一下,感觉还是不到位,在这里再稍微深入一点。 交叉熵cross entropy 鉴别器是GAN中重要的一部分,鉴别器和生成器交替训练的过程就是adversarial training的过程。而鉴别器的本质是一个二分类网络,所以要理解gan loss,就首先要熟悉二分

深度学习实战4--GAN进阶与优化

GAN  的问题主要有两点:Loss 等于0的梯度消失问题和梯度不稳定以及多样性受损。 前者是因为选择的分布函数使用JS 距离,这个距离不能衡量两个不相交的分布的距离;后者是因为Loss  函数要求KL 距离最小,JS 距离最大,所以梯度不稳定,而且 Loss 函数对正确率要求太大,多样性要求小,所以会造成模型选择大量生成“安全”的“数字1”来降低Loss函数。

深度学习-生成模型:Generation(Tranform Vector To Object with RNN)【PixelRNN、VAE(变分自编码器)、GAN(生成对抗网络)】

深度学习-生成模型:Generation(Tranform Vector To Object with RNN)【PixelRNN、VAE(变分自编码器)、GAN(生成对抗网络)】 一、Generator的分类二、Native Generator (AutoEncoder's Decoder)三、PixelRNN1、生成句子序列2、生成图片3、生成音频:WaveNet4、生成视频:Video

Attentation-GAN for super-resolution(ASRGAN )

Attenatation-GAN for super-resolution(ASRGAN) 1 简单介绍:       目前的SR方法解决的都是小尺寸的数据小于500px,本文提出的是针对大尺寸的数据比如大于2000px的商业数据。本文的创新之处: 提出一种新奇的使用注意力机制的SRGAN方法,叫做A-SRGAN,他是吸收了SAGAN的思想,然后哩由于处理的是大尺度的数据,所以

六种GAN评估指标的综合评估实验,迈向定量评估GAN的重要一步

六种GAN评估指标的综合评估实验,迈向定量评估GAN的重要一步 生成对抗网络的评估目前仍以定性评估和一些可靠性较差的指标为主,这阻碍了问题的细化,并具有误导性的风险。本文讨论了多个 GAN 评估指标,并从多个方面对评估指标进行了实验评估,包括 Inception Score、Mode Score、Kernel MMD、Wasserstein 距离、Fréchet Inception Dis

GAN:数据生成的魔术师

GAN:数据生成的魔术师 在数据科学的世界中,生成对抗网络(GAN)是一种革命性的工具,它能够生成高质量、逼真的数据。GAN由两个关键部分组成:生成器(Generator)和判别器(Discriminator)。生成器的目标是产生尽可能逼真的数据,而判别器则努力区分真实数据和生成器产生的数据。这种对抗过程推动了两个网络的性能不断提升,最终能够生成难以区分真假的数据。 GAN的工作原理 GAN

深度学习实战3--GAN:基础手写数字对抗生成

本节目标 1.看懂GAN  基础架构的代码; 2.重点是GAN  的损失函数的构成; 3.理解如何从 GAN 修改成CGAN; 4.尝试复现本章实战任务 任务描述         GAN 的任务是生成,用两个模型相互对抗,来增强生成模型的效果。此处准备的数据集是MNIST手写数字,希望生成类似的手写数字的图像。 判别器和生成器:生成器 G 是创造者,负责生成新的数据实例,而判别器 D