【Faiss】indexes 前(后)处理(五)

2024-08-27 17:58
文章标签 处理 indexes faiss

本文主要是介绍【Faiss】indexes 前(后)处理(五),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pre and post processing

在某些情形下,需要对Index做前处理或后处理。

ID映射

默认情况下,faiss会为每个输入的向量记录一个次序id,在使用中也可以为向量指定任意我们需要的id。
部分index类型有add_with_ids方法,可以为每个向量对应一个64-bit的id,搜索的时候返回这个指定的id。

#导入faiss
import sys
sys.path.append('/home/maliqi/faiss/python/')
import faiss
import numpy as np #获取数据和Id
d = 512
n_data = 2000
data = np.random.rand(n_data, d).astype('float32')
ids = np.arange(100000, 102000)  #id设定为6位数整数

 

nlist = 10
quantizer = faiss.IndexFlatIP(d)
index = faiss.IndexIVFFlat(quantizer, d, nlist, faiss.METRIC_L2)
index.train(data)
index.add_with_ids(data, ids)
d, i = index.search(data[:5], 5)
print(i)  #返回的id应该是我们自己设定的
[[100000 100383 101007 101444 100729][100001 100880 101693 100004 100964][100002 101113 101998 101017 101768][100003 100694 101701 101608 100831][100004 100111 100564 100541 100513]]

但是对有些Index类型,并不支持add_with_ids,因此需要与其他Index类型结合,将默认的id映射到指定id,用IndexIDMap类实现。
指定的ids不能是字符串,只能是整数。

index = faiss.IndexFlatL2(data.shape[1]) 
index.add_with_ids(data, ids)  #报错
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-5-4de928a09ab9> in <module>()1 index = faiss.IndexFlatL2(data.shape[1])
----> 2 index.add_with_ids(data, ids)/home/maliqi/faiss/python/faiss/__init__.py in replacement_add_with_ids(self, x, ids)104         assert d == self.d105         assert ids.shape == (n, ), 'not same nb of vectors as ids'
--> 106         self.add_with_ids_c(n, swig_ptr(x), swig_ptr(ids))107 108     def replacement_assign(self, x, k):/home/maliqi/faiss/python/faiss/swigfaiss.py in add_with_ids(self, n, x, xids)1316 1317     def add_with_ids(self, n, x, xids):
-> 1318         return _swigfaiss.Index_add_with_ids(self, n, x, xids)1319 1320     def search(self, n, x, k, distances, labels):RuntimeError: Error in virtual void faiss::Index::add_with_ids(faiss::Index::idx_t, const float*, const long int*) at Index.cpp:46: add_with_ids not implemented for this type of index
index2 = faiss.IndexIDMap(index)  
index2.add_with_ids(data, ids)  #将index的id映射到index2的id,会维持一个映射表

数据转换

有些时候需要在索引之前转换数据。转换类继承了VectorTransform类,将输入向量转换为输出向量。
1)随机旋转,类名RandomRotationMatri,用以均衡向量中的元素,一般在IndexPQ和IndexLSH之前;
2)PCA,类名PCAMatrix,降维;
3)改变维度,类名RemapDimensionsTransform,可以升高或降低向量维数

举例:PCA降维(通过IndexPreTransform)

输入向量是2048维,需要减少到16byte。

data = np.random.rand(n_data, 2048).astype('float32')
# the IndexIVFPQ will be in 256D not 2048
coarse_quantizer = faiss.IndexFlatL2 (256) 
sub_index = faiss.IndexIVFPQ (coarse_quantizer, 256, 16, 16, 8)
# PCA 2048->256
# 降维后随机旋转 (第四个参数)
pca_matrix = faiss.PCAMatrix (2048, 256, 0, True) #- the wrapping index
index = faiss.IndexPreTransform (pca_matrix, sub_index)# will also train the PCA
index.train(data)  #数据需要是2048维
# PCA will be applied prior to addition
index.add(data)

举例:升维

有时候需要在向量中插入0升高维度,一般是我们需要 1)d是4的整数倍,有利于举例计算; 2)d是M的整数倍。

d = 512
M = 8   #M是在维度方向上分割的子空间个数
d2 = int((d + M - 1) / M) * M
remapper = faiss.RemapDimensionsTransform (d, d2, True)
index_pq = faiss.IndexPQ(d2, M, 8)
index = faiss.IndexPreTransform (remapper, index_pq) #后续可以添加数据/索引

对搜索结果重新排序

当查询向量时,可以用真实距离值对结果进行重新排序。
在下面的例子中,搜索阶段会首先选取4*10个结果,然后对这些结果计算真实距离值,再从中选取10个结果返回。IndexRefineFlat保存了全部的向量信息,内存开销不容小觑。

data = np.random.rand(n_data, d).astype('float32')
nbits_per_index = 4
q = faiss.IndexPQ (d, M, nbits_per_index)
rq = faiss.IndexRefineFlat (q)
rq.train (data)
rq.add (data)
rq.k_factor = 4
dis, ind = rq.search (data[:5], 10)
print(ind)
[[   0  434 1647 1501  867  658  822 1164  490 1430][   1 1035  369  392  866 1645 1961 1469 1946  175][   2  466 1183  403  427  505  394  759  633  746][   3 1668 1798 1293  965 1484  755  315 1633 1453][   4  309  715 1204  996  239 1381   48  707 1311]]

综合多个index返回的结果

当数据集分布在多个index中,需要在每个index中都执行搜索,然后使用IndexShards综合得到结果。同样也适用于index分布在不同的GPU的情况。

这篇关于【Faiss】indexes 前(后)处理(五)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112376

相关文章

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Spring Boot 整合 ShedLock 处理定时任务重复执行的问题小结

《SpringBoot整合ShedLock处理定时任务重复执行的问题小结》ShedLock是解决分布式系统中定时任务重复执行问题的Java库,通过在数据库中加锁,确保只有一个节点在指定时间执行... 目录前言什么是 ShedLock?ShedLock 的工作原理:定时任务重复执行China编程的问题使用 Shed

Redis如何使用zset处理排行榜和计数问题

《Redis如何使用zset处理排行榜和计数问题》Redis的ZSET数据结构非常适合处理排行榜和计数问题,它可以在高并发的点赞业务中高效地管理点赞的排名,并且由于ZSET的排序特性,可以轻松实现根据... 目录Redis使用zset处理排行榜和计数业务逻辑ZSET 数据结构优化高并发的点赞操作ZSET 结

微服务架构之使用RabbitMQ进行异步处理方式

《微服务架构之使用RabbitMQ进行异步处理方式》本文介绍了RabbitMQ的基本概念、异步调用处理逻辑、RabbitMQ的基本使用方法以及在SpringBoot项目中使用RabbitMQ解决高并发... 目录一.什么是RabbitMQ?二.异步调用处理逻辑:三.RabbitMQ的基本使用1.安装2.架构

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

mysql外键创建不成功/失效如何处理

《mysql外键创建不成功/失效如何处理》文章介绍了在MySQL5.5.40版本中,创建带有外键约束的`stu`和`grade`表时遇到的问题,发现`grade`表的`id`字段没有随着`studen... 当前mysql版本:SELECT VERSION();结果为:5.5.40。在复习mysql外键约

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

Python结合requests和Cheerio处理网页内容的操作步骤

《Python结合requests和Cheerio处理网页内容的操作步骤》Python因其简洁明了的语法和强大的库支持,成为了编写爬虫程序的首选语言之一,requests库是Python中用于发送HT... 目录一、前言二、环境搭建三、requests库的基本使用四、Cheerio库的基本使用五、结合req