本文主要是介绍【YOLOV4】FPN+PAN结构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
yolo4的neck结构采用该模式,我们将Neck部分用立体图画出来,更直观的看下两部分之间是如何通过FPN结构融合的。
如图所示,FPN是自顶向下的,将高层特征通过上采样和低层特征做融合得到进行预测的特征图。Neck部分的立体图像,看下两部分是如何通过FPN+PAN结构进行融合的。
和Yolov3的FPN层不同,Yolov4在FPN层的后面还添加了一个自底向上的特征金字塔。这样结合操作,FPN层自顶向下传达强语义特征,而特征金字塔则自底向上传达强定位特征,两两联手,从不同的主干层对不同的检测层进行参数聚合,这样的操作确实很皮。
自底向上增强
如上图中所示,FPN是自顶向下,将高层的强语义特征传递下来,对整个金字塔进行增强,不过只增强了语义信息,对定位信息没有传递,而本文就是针对这一点,在FPN的后面添加一个自底向上的金字塔,可以说是很皮了。这样的操作是对FPN的补充,将低层的强定位特征传递上去,个人称之为”双塔战术“。
参考:
https://zhuanlan.zhihu.com/p/143747206utm_source=wechat_session&utm_medium=social&utm_oi=667962890661924864&from=singlemessage
https://www.cnblogs.com/wzyuan/p/10029830.html
最后说一下全连接作用:全连接层其实可由卷积实现,可看作感受野为整个特征图的卷积核,所以全连接层是感受野更大的卷积,另外,这里的卷积参数不共享,每个像素点拥有一个卷积核。
这篇关于【YOLOV4】FPN+PAN结构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!