C++ 设计模式——享元模式

2024-08-27 14:20
文章标签 c++ 设计模式 模式 享元

本文主要是介绍C++ 设计模式——享元模式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

C++ 设计模式——享元模式

    • C++ 设计模式——享元模式
      • 1. 主要组成成分
      • 2. 享元模式内部状态
      • 3. 享元模式外部状态
      • 4. 逐步构建享元模式
        • 4.1 抽象享元类定义
        • 4.2 具体享元类实现
        • 4.3 享元工厂类实现
        • 4.4 主函数
      • 5. 享元模式 UML 图
        • 享元模式 UML 图解析
      • 6. 享元模式的优点
      • 7. 享元模式的缺点
      • 8. 适用场景
      • 完整代码

C++ 设计模式——享元模式

享元模式(Flyweight Pattern)是一种结构型设计模式,用于通过共享相似对象来减少内存使用和提高性能。该模式特别适用于需要大量相似对象的场景,通过将对象的状态分为内部状态和外部状态,来实现高效的对象共享。

享元模式也称为蝇量模式,旨在解决面向对象程序设计中的性能问题。享元的英文名“Flyweight”意为“轻量级”,源于拳击比赛中较轻的选手。该模式的核心目标是让对象变得“轻”,即减少内存占用。在需要某个对象时,尽量共享已经创建的同类对象,以避免频繁使用 new 创建同类或相似的对象。在对象数量非常庞大的情况下,这种共享可以显著节省内存占用并提升程序运行效率。

1. 主要组成成分

  • 抽象享元角色(Flyweight):享元对象的抽象基类或接口,定义了对象的外部状态和内部状态的接口或实现。
  • 具体享元角色(Concrete Flyweight):实现抽象享元类中的方法,是需要共享的对象类。
  • 享元工厂(Flyweight Factory):负责创建和管理享元对象,确保享元对象的共享。

2. 享元模式内部状态

  • 定义:内部状态是对象在共享时可以保持不变的状态。这些状态是可以被多个对象共享的,因此在享元模式中,内部状态通常被存储在享元对象中。
  • 特点:内部状态不依赖于具体的环境或上下文,可以在多个享元对象之间共享。例如,在棋盘游戏中,棋子的颜色(黑色或白色)就是内部状态。

3. 享元模式外部状态

  • 定义:外部状态是与具体上下文相关的状态,通常在对象使用时作为参数传递。外部状态在不同的场景下可能会变化,因此不能被共享。
  • 特点:外部状态依赖于具体的环境或上下文,通常在调用享元对象的方法时传递。例如,在棋盘游戏中,棋子的位置(如坐标)就是外部状态。

4. 逐步构建享元模式

以下是一个简单的享元模式示例,模拟一个棋盘游戏中的棋子绘制系统,其中可能会有大量相似的棋子对象。

4.1 抽象享元类定义

定义棋子的基本结构。EnumColor 枚举表示棋子的颜色,Position 结构体表示棋子的位置。Piece 是一个抽象类,定义了绘制棋子的接口。

enum EnumColor  //棋子颜色
{Black,  //黑White   //白
};struct Position //棋子位置
{int m_x;int m_y;Position(int tmpx, int tmpy) :m_x(tmpx), m_y(tmpy) {} //构造函数
};class Piece //棋子抽象类
{
public:virtual ~Piece() {} //做父类时析构函数应该为虚函数public:virtual void draw(Position tmppos) = 0;
};
4.2 具体享元类实现

实现具体的棋子类,分别为黑色和白色棋子。每个类实现了 draw 方法,负责在指定位置绘制棋子。通过共享这些具体棋子类,减少内存使用。

class BlackPiece : public Piece //黑色棋子
{
public:virtual void draw(Position tmppos){cout << "在位置:(" << tmppos.m_x << "," << tmppos.m_y << ")处绘制了一个黑色棋子!" << endl;}
};
class WhitePiece : public Piece //白色棋子
{
public:virtual void draw(Position tmppos){cout << "在位置:(" << tmppos.m_x << "," << tmppos.m_y << ")处绘制了一个白色棋子!" << endl;}
};
4.3 享元工厂类实现

工厂类负责创建和管理棋子对象。它使用 std::map 存储已经创建的棋子对象,以便在需要时返回共享的对象。析构函数确保释放内存,防止内存泄漏。

class pieceFactory  //创建棋子的工厂
{
public:~pieceFactory() //析构函数{//释放内存for (auto iter = m_FlyWeihgtMap.begin(); iter != m_FlyWeihgtMap.end(); ++iter){Piece* tmpfw = iter->second;delete tmpfw;}m_FlyWeihgtMap.clear();//这句其实可有可无}
public:Piece* getFlyWeight(EnumColor tmpcolor) //获取享元对象,也就是获取被共享的棋子对象{auto iter = m_FlyWeihgtMap.find(tmpcolor);if (iter == m_FlyWeihgtMap.end()){//没有该享元对象,那么就创建出来Piece* tmpfw = nullptr;if (tmpcolor == Black) //黑子{tmpfw = new BlackPiece();}else //白子{tmpfw = new WhitePiece();}m_FlyWeihgtMap.insert(make_pair(tmpcolor, tmpfw));//以棋子颜色枚举值为key,增加条目到map中return tmpfw;}else{return iter->second;}}
private://在文件头增加#include <map>std::map<EnumColor, Piece*> m_FlyWeihgtMap; //用map容器来保存所有的享元对象,一共就两个享元对象(黑色棋子一个,白色棋子一个)
};
4.4 主函数
int main()
{pieceFactory* pfactory = new pieceFactory();Piece* p_piece1 = pfactory->getFlyWeight(Black);p_piece1->draw(Position(3, 3));//黑子落子到3,3位置Piece* p_piece2 = pfactory->getFlyWeight(White);p_piece2->draw(Position(5, 5));//白子落子到5,5位置Piece* p_piece3 = pfactory->getFlyWeight(Black);p_piece3->draw(Position(4, 6));//黑子落子到4,6位置Piece* p_piece4 = pfactory->getFlyWeight(White);p_piece4->draw(Position(5, 7));//白子落子到5,7位置//释放资源delete pfactory;return 0;
}

执行结果:

在位置:(3,3)处绘制了一个黑色棋子!
在位置:(5,5)处绘制了一个白色棋子!
在位置:(4,6)处绘制了一个黑色棋子!
在位置:(5,7)处绘制了一个白色棋子!

5. 享元模式 UML 图

享元模式 UML 图

享元模式 UML 图解析
  • Flyweight (抽象享元类):通常是一个接口或抽象类。在该类中声明各种享元类的方法,外部状态可以作为参数传递到这些方法中。这里的抽象享元类是 Piece,方法是 draw,外部状态(棋子的位置)通过 draw 方法的参数传递。
  • Concrete Flyweight (具体享元类):抽象享元类的子类,用这些类创建的对象就是享元对象。这里指 BlackPieceWhitePiece 类。
  • Flyweight Factory (享元工厂类):用于创建并管理享元对象,存在一个享元池(一般使用 std::map 存储键值对)。当用户请求一个享元对象时,该工厂返回一个已创建的享元对象,或者如果请求的对象不存在,则新创建一个并放入享元池。

6. 享元模式的优点

  • 节省内存:通过共享相似对象,减少了内存使用,尤其在需要大量相似对象的情况下。
  • 提高性能:减少了对象的创建和销毁次数,提高了系统性能。
  • 清晰的结构:通过将共享和非共享的状态分开,代码结构更加清晰。

7. 享元模式的缺点

  • 复杂性增加:引入享元模式会增加代码的复杂性,尤其是在管理共享对象时。
  • 外部状态管理:外部状态需要单独管理,可能导致代码的可读性降低。
  • 类数量增加:每个不同的共享状态都需要一个具体的享元类,可能导致类的数量增加。

8. 适用场景

  • 大量相似对象:当系统需要创建大量相似对象时,享元模式可以有效减少内存开销。
  • 对象状态分离:对象的状态可以分为内部状态和外部状态,适合使用享元模式来管理。
  • 性能优化:在性能敏感的应用中,使用享元模式可以显著提高效率。

完整代码

#include <iostream>
#include <list>
#include <map>using namespace std;enum EnumColor  //棋子颜色
{Black,  //黑White   //白
};struct Position //棋子位置
{int m_x;int m_y;Position(int tmpx, int tmpy) :m_x(tmpx), m_y(tmpy) {} //构造函数
};class Piece //棋子抽象类
{
public:virtual ~Piece() {} //做父类时析构函数应该为虚函数public:virtual void draw(Position tmppos) = 0;
};class BlackPiece : public Piece //黑色棋子
{
public:virtual void draw(Position tmppos){cout << "在位置:(" << tmppos.m_x << "," << tmppos.m_y << ")处绘制了一个黑色棋子!" << endl;}
};
class WhitePiece : public Piece //白色棋子
{
public:virtual void draw(Position tmppos){cout << "在位置:(" << tmppos.m_x << "," << tmppos.m_y << ")处绘制了一个白色棋子!" << endl;}
};class pieceFactory  //创建棋子的工厂
{
public:~pieceFactory() //析构函数{//释放内存for (auto iter = m_FlyWeihgtMap.begin(); iter != m_FlyWeihgtMap.end(); ++iter){Piece* tmpfw = iter->second;delete tmpfw;}m_FlyWeihgtMap.clear();//这句其实可有可无}
public:Piece* getFlyWeight(EnumColor tmpcolor) //获取享元对象,也就是获取被共享的棋子对象{auto iter = m_FlyWeihgtMap.find(tmpcolor);if (iter == m_FlyWeihgtMap.end()){//没有该享元对象,那么就创建出来Piece* tmpfw = nullptr;if (tmpcolor == Black) //黑子{tmpfw = new BlackPiece();}else //白子{tmpfw = new WhitePiece();}m_FlyWeihgtMap.insert(make_pair(tmpcolor, tmpfw));//以棋子颜色枚举值为key,增加条目到map中return tmpfw;}else{return iter->second;}}
private://在文件头增加#include <map>std::map<EnumColor, Piece*> m_FlyWeihgtMap; //用map容器来保存所有的享元对象,一共就两个享元对象(黑色棋子一个,白色棋子一个)
};int main()
{pieceFactory* pfactory = new pieceFactory();Piece* p_piece1 = pfactory->getFlyWeight(Black);p_piece1->draw(Position(3, 3));//黑子落子到3,3位置Piece* p_piece2 = pfactory->getFlyWeight(White);p_piece2->draw(Position(5, 5));//白子落子到5,5位置Piece* p_piece3 = pfactory->getFlyWeight(Black);p_piece3->draw(Position(4, 6));//黑子落子到4,6位置Piece* p_piece4 = pfactory->getFlyWeight(White);p_piece4->draw(Position(5, 7));//白子落子到5,7位置//释放资源delete pfactory;return 0;
}

这篇关于C++ 设计模式——享元模式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111917

相关文章

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

C++一个数组赋值给另一个数组方式

《C++一个数组赋值给另一个数组方式》文章介绍了三种在C++中将一个数组赋值给另一个数组的方法:使用循环逐个元素赋值、使用标准库函数std::copy或std::memcpy以及使用标准库容器,每种方... 目录C++一个数组赋值给另一个数组循环遍历赋值使用标准库中的函数 std::copy 或 std::

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表