代码与原理:混合精度训练详解

2024-08-27 12:44

本文主要是介绍代码与原理:混合精度训练详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

浮点数的表示

计算机是二进制的世界,所以浮点数也是用二进制来表示的,与整型不同的是,浮点数通过3个区间来表示,分别是:

  • sign 表示正负,1表示正数,0表示负数
  • exponent 用来确定数字的范围,这一部分有 k 个bit来表示二进制,所以 k 越大,浮点数能表示的范围就越大
  • fraction 部分用来确定精度,也是位数越多,能表示的精度就越高

比如:

  • BF16 一共 16bit,sign 占 1 bit,exponent 占8 bit,fraction占7bit
  • FP16 一共16bit,sign 占 1 bit,exponent 占5bit, fraction占10bit

BF16能表示的数字范围更大,但是表示的精度更低。FP16 表示的数字范围更小,但是表示的精度更高深度学习中长期使用的标准格式是FP32,因为它能平衡数值范围和精度,同时也有较好的硬件支持。

  • FP32一共32bit,sign 占 1 bit,exponent 占8 bit,fraction占23 bit

FP16存在的问题

float16和float32相比内存占用更少**,**通用的模型 fp16 占用的内存只需原来的一半,就意味着训练的时候可以用更大的batchsize,且在多卡训练时数据通信量大幅减少等待时间,还能加快计算节省模型的训练时间。但在模型的训练过程中,训练的稳定性很重要,如果用 FP16会出现如下问题:

  • 数据溢出(范围):在反向传播中,需要计算网络模型中权重的梯度(一阶导数),因此在加权后值会更小。由上图可知FP16相比FP32的有效范围要窄很多,使用FP16替换FP32会出现上溢(Overflow)和下溢(Underflow)的情况,实际中更容易出现下溢情况
  • 舍入误差(精度):是指当网络模型的反向梯度很小,一般FP32能够表示,但是转换到FP16会小于当前区间内的最小间隔,会导致数据溢出。如0.00006666666在FP32中能正常表示,转换到FP16后会表示成为0.000067,不满足FP16最小间隔的数会强制舍入产生误差

混合精度训练原理

为了想让深度学习训练可以使用FP16的好处,又要避免精度溢出和舍入误差。于是可以通过FP16和FP32的混合精度训练(Mixed-Precision),混合精度训练过程中可以引入权重备份(Weight Backup)、损失放大(Loss Scaling)、精度累加(Precision Accumulated)三种相关的技术。

权重备份(Weight Backup)

权重备份主要用于解决舍入误差的问题。其主要思路是把神经网络训练过程中产生的激活activations、梯度 gradients、中间变量等数据,在训练中都利用FP16来存储,同时复制一份FP32的权重参数weights,用于训练时候的更新。

权重用FP32格式备份一次,那岂不是使得内存占用反而更高了呢?是的,额外拷贝一份权重的确增加了训练时候内存的占用。但是实际上,在训练过程中内存中分为动态内存和静态内容,其中动态内存是静态内存的3-4倍,主要是中间变量值和激活activations的值。而这里备份的权重增加的主要是静态内存。只要动态内存的值基本都是使用FP16来进行存储,则最终模型与整网使用FP32进行训练相比起来, 内存占用也基本能够减半。

损失缩放(Loss Scaling)

因为梯度值太小,使用FP16表示有时会造成数据下溢出的问题,导致模型不收敛。为了解决梯度过小数据下溢的问题,对前向计算出来的Loss值进行放大操作,也就是把FP32的参数乘以某一个因子系数后,把可能溢出的小数位数据往前移,平移到FP16能表示的数据范围内。根据链式求导法则,放大Loss后会作用在反向传播的每一层梯度,这样比在每一层梯度上进行放大更加高效。损失放大是需要结合混合精度实现的,其主要的主要思路是:

  • Scale up阶段:网络模型前向计算后在反响传播前,将得到的损失变化值Loss增大2^K倍
  • Scale down阶段:反向传播后,将权重梯度缩2^K倍,恢复FP32值进行存储

精度累加(Precision Accumulated)

在混合精度的模型训练过程中,使用FP16进行矩阵乘法运算,利用FP32来进行矩阵乘法中间的累加(accumulated),然后再将FP32的值转化为FP16进行存储。简单而言,就是利用FP16进行矩阵相乘,利用FP32来进行加法计算弥补丢失的精度。这样可以有效减少计算过程中的舍入误差,尽量减缓精度损失的问题。

混合精度训练代码

下面是一个使用PyTorch进行混合精度训练的例子:

import torch
import torch.nn as nn
import torch.optim as optim
from torch.cuda.amp import autocast, GradScalerclass SimpleMLP(nn.Module):def __init__(self):super(SimpleMLP, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 2)def forward(self, x):x = torch.relu(self.fc1(x))x = self.fc2(x)return x

启用混合精度:

model = SimpleMLP().cuda()
model.train()
scaler = GradScaler()for epoch in range(num_epochs):for batch in data_loader:x, y = batchx, y = x.cuda(), y.cuda()with autocast():outputs = model(x)loss = criterion(outputs, y)# 反向传播和权重更新# 放大梯度scaler.scale(loss).backward() # 应用缩放后的梯度进行权重更新scaler.step(optimizer)# 更新缩放因子scaler.update()

在这个例子中,autocast()将模型的前向传播和损失计算转换为FP16格式。然而,反向传播仍然是在FP32精度下进行的,这是为了保持数值稳定性。

由于FP16的数值范围较小,可能会导致梯度下溢出,所以GradScaler()在反向传播之前将梯度的值放大,然后在权重更新之后将放大的梯度缩放回来,在计算梯度后,使用scaler.step(optimizer)来应用缩放后的梯度,从而避免了数值下溢的问题。

torch.save(model.state_dict(), 'model.pth')
model.load_state_dict(torch.load('model.pth'))

在混合精度训练中,虽然模型的权重在训练过程中可能会被转换为 FP16 格式以节省内存和加速计算,但在保存模型时,我们通常会将权重转换回 FP32 格式。这是因为 FP32 提供了更高的数值精度和更广泛的硬件支持(FP16需要有Tensor Core的GPU),这使得模型在不同环境中的兼容性和可靠性更好。

混合精度训练有很多有意思的地方,目前使用动态混合精度的方法来充分利用GPU,以达到计算和内存的高效运行比是一个较为前沿的研究方向。

在这里插入图片描述

这篇关于代码与原理:混合精度训练详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111706

相关文章

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

MySQL中between and的基本用法、范围查询示例详解

《MySQL中betweenand的基本用法、范围查询示例详解》BETWEENAND操作符在MySQL中用于选择在两个值之间的数据,包括边界值,它支持数值和日期类型,示例展示了如何使用BETWEEN... 目录一、between and语法二、使用示例2.1、betwphpeen and数值查询2.2、be

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Java中ArrayList与顺序表示例详解

《Java中ArrayList与顺序表示例详解》顺序表是在计算机内存中以数组的形式保存的线性表,是指用一组地址连续的存储单元依次存储数据元素的线性结构,:本文主要介绍Java中ArrayList与... 目录前言一、Java集合框架核心接口与分类ArrayList二、顺序表数据结构中的顺序表三、常用代码手动

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

JAVA线程的周期及调度机制详解

《JAVA线程的周期及调度机制详解》Java线程的生命周期包括NEW、RUNNABLE、BLOCKED、WAITING、TIMED_WAITING和TERMINATED,线程调度依赖操作系统,采用抢占... 目录Java线程的生命周期线程状态转换示例代码JAVA线程调度机制优先级设置示例注意事项JAVA线程

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

C++构造函数中explicit详解

《C++构造函数中explicit详解》explicit关键字用于修饰单参数构造函数或可以看作单参数的构造函数,阻止编译器进行隐式类型转换或拷贝初始化,本文就来介绍explicit的使用,感兴趣的可以... 目录1. 什么是explicit2. 隐式转换的问题3.explicit的使用示例基本用法多参数构造