【Python机器学习】NLP分词——利用分词器构建词汇表(四)——标点符号的处理

本文主要是介绍【Python机器学习】NLP分词——利用分词器构建词汇表(四)——标点符号的处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

正则表达式的工作机理

改进的用于分词的正则表达式

缩略语


某些情况下,除空格外还有一些字符用于将句子中的词分隔开,比如之前case中“26.”末尾的句号(英文)。分词器不仅可以利用空格还可以基于标点符号(如逗号、句号、分号、连字符等)将句子切开。在某些情况下,我们希望这些标点符号也像词一样,被看成独立的词条,但另一些情况下可能又要忽略这些标点符号。

在“26.”的例子中,由于英文句号导致出错,末尾的句号可能会对NLP流水线的后续部分如词干还原造成误导,因为词干还原的目的是利用规则将相似词聚成组,而这些规则往往要基于一致的词拼写结果。

下面的代码给出了将标点符号作为分隔符的一种做法:

import pandas as pd
import resentence="""
Thomas Jefferson Began buliding Monticelli as the age of 26.\n
"""
token=re.split(r'[-\s.,;!?]+',sentence)
print(token)

可以看到,“.”已经没有出现在分词结果中。

正则表达式的工作机理

上述代码中正则表达式的工作机理:方括号[]表示一个字符类,即字符集。右方括号]后面的+表示必须匹配方括号内的一个或多个字符。字符类中的\s是一个预定义字符类的快捷表示,该字符类包括所有的空白符,如敲击空格键、制表键或者回车键产生的字符。字符类 r'[\s]' 等价于r'\t\n\r\x0b\x0c'。这6个空白符分别是空格(' ')、制表符('\t')、换行符('\n')、回车符('\r')、以及换页符('\f')。

这里没有使用任何字符区间。字符空间是一种特定的字符类,方括号中采用连字符来表示。如 r'[a-z]' 可以匹配所有的小写字母。字符区间 r'[0-9]' 匹配任何从0到9的数字,其等价于 r'[0123456789]' 。正则表达式 r'[_a-zA-Z]' 表示可以匹配任意下划线字符或者大小写英文字母。

左方括号之后的连字符(-)是正则表达式的一个惯有用法。连字符不能放在方括号内的任何地方。否则正则表达式解析器会认为这里意味着有一个字符区间,如 r'[0-9]' 。为了表明确实是一个真正的连字符,必须将其放在紧挨在该字符类左方括号的后面。因此,任何需要表明是真正的连字符的地方,都应使其要么是左方括号后的第一个字符,要么通过转义符来表示。

re.split函数从左到右遍历输入字符串中的每个字符,并根据正则表达式进行匹配。一旦发现有匹配上的字符,它会在匹配上的字符之前和之后分隔字符串,同时跳过匹配的一个或多个字符。re.split那一行的处理就像 str.split 一样,但它适用于任何与正则表达式匹配的字符或多字符序列。

圆括号(和)用于对正则表达式进行分组,就像它们用于对数学、Python和大多数其他编程语言表达式进行分组一样。这些圆括号强制正则表达式匹配圆括号内的整个表达式,然后再尝试匹配圆括号后面的字符。

改进的用于分词的正则表达式

我们对正则表达式进行编译从而加快分词器的运行速度。编译后的正则表达式对象在很多方面都比较方便,而不仅仅是速度。

正则表达式的编译时机:

Python中的正则表达式模块可以对正则表达式进行预编译,这样就可以在代码库中对它们进行复用。例如:有一个正则表达式可以提供电话号码。可以使用re.complie()对该表达式进行预编译,然后就可以将其以参数的方式传递给分词函数或者类。因为Python会对最近的MAXCACHE=100个正则表达式的编译对象进行缓存,所以上述处理基本不会带来速度上的好处。但是如果有超过100个不同的正则表达式在同时进行工作,或者想调用正则表达式的方法而不是相应的re函数的话,re.complie()就会很有用

上面那个简单的正则表达有助于将“26.”的末尾句号分隔出去。但是,这样会遇到一个新问题。我们必须将不想放入词汇表的空白符和标点符号过滤掉,参考下面的例子:

sentence="""
Thomas Jefferson Began buliding Monticelli as the age of 26.\n
"""
pattern=re.compile(r"([-\s.,;!?])+")
tokens=pattern.split(sentence)
print([x for x in tokens if x and x not in '- \t\n.,;!?'])

因此,Python内置的re包看省区对于上述示例句子处理的很好,只要注意过滤掉一些不想要的词条即可。实在没有别的理由需要从别的地方找一个其他的正则表达式包,除非满足以下条件:

1、集合的重合匹配;

2、多线程;

3、近似正则表达式匹配(类似于UNIX系统的TREagrep);

4、特性完备地支持Unicode;

5、更大的MAXCACHE默认值。

随着需求的变化,分词器很容易就变得复杂无比。在一些情况下,我们可能想在句号(.)处进行分割,但是这时候句号后面不能跟着数字,否则我们可能会把小数切开。还有一些情况,我们可能不会在句号后面分割句子,因为这时句号是颜文字的一部分。

有多个Python库可以用于分词,它们的优缺点如下:

1、spaCy:精确、灵活、快速,用Python语言编写;

2、standford coreNLP:更精确,但不够灵活、快速,依赖于Java8;

3、NLTK:很多NLP竞赛和对比的标配,流行,用Python语言编写。

NLTK和standford coreNLP历史最悠久。尽管standford coreNLP具有Python API,但它还要依赖Java 8  的coreNLP后端,因而需要另外安装和配置。因此,我们可以使用NLTK分词器来快速运行示例,帮助我们快速重现一些实验结果:

from nltk.tokenize import RegexpTokenizer
tokenizer=RegexpTokenizer(r'\w+|$[0-9.]\S+')
print(tokenizer.tokenize(sentence))

上述分词器相比之前的要好一些,它忽略了空白符词条,并且可以将不包含其他标点符号的词条中的句尾标点符号分隔开来。

一个更好的分词器是来自NLTK包的treebankWordTokenizer分词器,它内置了多种常见的英文分词规则。例如,它从相邻的词条中将短语结束符号(?!.:,)分开,将包含句号的小数当成单个词条。另外,它还包含一些英文缩略的规则,例如,“don't”会切分成["do","n,t"]。该分词器有助于NLP流水线的后续步骤,如词干还原。下面是该分词器的示例:

from nltk.tokenize import TreebankWordTokenizer
tokenizer=TreebankWordTokenizer()
print(tokenizer.tokenize(sentence))

缩略语

对于一些应用来说,例如使用句树法的基于语法的NLP模型,将“wasn.t”切分成“was”和“not”很重要,这样可以使句树法分析器能够将与已知语法规则保持一致并且可预测的词条集作为输入。存在大量标准和非标准的缩略词处理方法。通过将缩略语还原为构成它的各个词,只需要对依存树分析器或者句法分词器进行编程以预见各词的不同拼写形式,而不需要面对所有可能的缩略语。

这篇关于【Python机器学习】NLP分词——利用分词器构建词汇表(四)——标点符号的处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111539

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]