第二章、评测指标与方法(晚点再继续补充)

2024-08-27 01:20

本文主要是介绍第二章、评测指标与方法(晚点再继续补充),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上两章基本上是AI生成,下面正真的干货来临,注意看~

一、评测指标

1、准确率

  • 插件命中率 :针对一批量数据,智能体独有的命中插件的概率
  • 知识库命中率:针对一批量数据,智能体独有的命中知识库的概率
  • 工作流命中率:针对一批量数据,智能体独有的命中工作流的概率
  • 精确率:系统返回的文档中与查询相关的文档比例,精确率=TP/(TP+FP).目标值:≥ 0.80
  • 召回率(Recall):是针对原样本而言的,其含义是在实际为正的样本中被预测为正样本的概率。目标值:>=0.75
  • 误报率:误报率=FP/(FP+TN)
  • 漏报率:漏报率=FN/(FN+TP)
  • F1:精确率和召回率的调和平均值。F1分数=(2∗精确率∗召回率)/(精确率+召回率),目标值>=0.77

2、生成质量

  • Blue:衡量生成文本与参考文本(通常是人工生成的)之间的相似度,常用于机器翻译评估。目标值>=0.30
  • Rouge:评估生成文本与参考文本之间的重合度,包括ROUGE-1(基于单词的重合)、ROUGE-2(基于短语的重合)和ROUGE-L(基于最长公共子序列的重合)。目标值>=0.35
  • Meteor:评估机器翻译质量的指标,它考虑了词义和词序。目标值:>=0.25

3、响应速度

  • 首响时间:检索第一个字节响应回来的时间
  • 生成速度:从检索结果到生成完成文本所需时间
  • 端到端延迟:从用户输入查询到返回最终生成文本的整体时间

网上应该有很多对于样本混淆矩阵解释,这里就不再过多赘述。稍后在评测和数据集中会说明具体是怎么标记及使用的

二、评测方法

基于python环境,提前先安装

pip install jieba

pip install scikit-learn

pip install rouge

pip install nltk

1、BlueValueTools(生成质量Blue)

避免每次都要下载nltk_data,可以将nltk_data放在一个文件夹下

import osfrom xxx.utils import jieba
import nltk
from nltk.translate.bleu_score import SmoothingFunctionclass   BlueValueTools(object):def __init__(self):nltk_data_path = os.path.abspath('./nltk_data')nltk.data.path.append(nltk_data_path)# 将句子分词并转换为n-gram格式def sentence_to_ngrams(self,sentence, n):words = jieba.lcut(sentence)return set(nltk.ngrams(words, n))# 计算BLEU指标def calculate_bleu(self,reference, candidate):smooth = SmoothingFunction().method4scores = []# for n in range(1, max_n + 1):reference_ngrams = self.sentence_to_ngrams(reference, 1)candidate_ngrams = self.sentence_to_ngrams(candidate, 1)return nltk.translate.bleu_score.sentence_bleu([reference_ngrams], candidate_ngrams, smoothing_function=smooth)
# # 测试数据
# reference = "关机并断开电源:确保电脑完全关闭,并从电源插座中拔掉电源线。"
# candidate = "关机并断开电源:确保电脑完全关闭,并从电源插座中拔掉电源线。"
# # 计算BLEU指标
# bleu_scores = BlueValueTools().calculate_bleu(reference, candidate)
# print(bleu_scores)

2、MeteorValueTools(生成质量Meteor)

import osfrom xxx.utils import jieba
import nltk
from nltk.translate.meteor_score import meteor_scoreclass MeteorValueTools(object):def __init__(self):nltk_data_path = os.path.abspath('./nltk_data')nltk.data.path.append(nltk_data_path)def preprocess_text(self, text):return ' '.join(jieba.cut(text)).split()def calculate_meteor(self, reference, candidate):processed_reference = self.preprocess_text(reference)processed_candidate = self.preprocess_text(candidate)scores = meteor_score([processed_reference], processed_candidate)return scoresif __name__ == '__main__':reference = "关机并断开电源:确保电脑完全关闭,并从电源插座中拔掉电源线。"candidate = "关机并断开电源。"scores = MeteorValueTools().calculate_meteor(reference, candidate)print(scores)

3、RougeValueTools(生成质量Rouge)

from rouge import Rouge
from xxx.utils import jiebaclass RougeValueTools(object):def preprocess_text(self, text):# 分词并连接成字符串words = jieba.lcut(text)processed_text = ' '.join(words)return processed_textdef calculate_rouge(self, reference, candidate):processed_reference = self.preprocess_text(reference)processed_candidate = self.preprocess_text(candidate)rouge = Rouge()scores = rouge.get_scores(processed_candidate, processed_reference, avg=True)# print(scores['rouge-1']['f'])# print(scores['rouge-2']['f'])# print(scores['rouge-l']['f'])scores = {'rouge-1': scores['rouge-1']['f'],'rouge-2': scores['rouge-2']['f'],'rouge-l': scores['rouge-l']['f']}return scoresif __name__ == '__main__':reference = "关机并断开电源:确保电脑完全关闭,并从电源插座中拔掉电源线。"candidate = "关机并断开电源。"scores = RougeValueTools().calculate_rouge(reference, candidate)print(scores)

4、数据集样本计算(先分享工具类,后面数据集中详细讲解)

from sklearn.metrics import confusion_matrixclass PrecisionScoreTool:def __init__(self, actual_labels, predicted_labels):self.actual_labels = actual_labelsself.predicted_labels = predicted_labelsdef calculate_metrics(self):# 计算混淆矩阵cm = confusion_matrix(self.actual_labels, self.predicted_labels)# 从混淆矩阵提取 TP、TN、FP、FNTP = cm[1, 1]TN = cm[0, 0]FP = cm[0, 1]FN = cm[1, 0]print(TP, TN, FP, FN)recall = TP / (TP + FN) if (TP + FN) != 0 else 0precision = TP / (TP + FP) if (TP + FP) != 0 else 0F1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) != 0 else 0FPR = FP / (FP + TN) if (FP + TN) != 0 else 0FNR = FN / (FN + TP) if (FN + TP) != 0 else 0return precision, recall, FPR, FNR, F1if __name__ == '__main__':calculator = PrecisionScoreTool([1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])precision, recall, FPR, FNR, F1 = calculator.calculate_metrics()print(precision)print(recall)print(FPR)print(FNR)print(F1)

最后关于响应速度,后面章节会结合大模型调用进行说明

这篇关于第二章、评测指标与方法(晚点再继续补充)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110235

相关文章

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

解读GC日志中的各项指标用法

《解读GC日志中的各项指标用法》:本文主要介绍GC日志中的各项指标用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基础 GC 日志格式(以 G1 为例)1. Minor GC 日志2. Full GC 日志二、关键指标解析1. GC 类型与触发原因2. 堆

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到