如何在AutoGen中使用自定义的大模型

2024-08-27 01:12

本文主要是介绍如何在AutoGen中使用自定义的大模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

也可在我的个人博客上查看:https://panzhixiang.cn/2024/autogen-custom-model/

背景

AutoGen原生只支持国外的大模型,如OpenAI, Claude, Mistral等,不支持国内的大模型。但是国内有一些大模型做的还是不错的,尤其是考虑的价格因素之后,国内的大模型性价比很好,我这两天就在想办法集成国内的大模型。

虽然AutoGen不直接支持国内的大模型,但是它支持自定义大模型(custom model)。可以参考这个博客:AutoGen with Custom Models: Empowering Users to Use Their Own Inference Mechanism

但是博客中的案例代码不是很直观,我在这篇博客中记录一下具体怎么接入国内的大模型,并给出案例代码。

自定义模型类

AutoGen允许自定义模型类,只要符合它的协议就行。

具体的协议要求在 autogen.oai.client.ModelClient 中,代码如下:

class ModelClient(Protocol):"""A client class must implement the following methods:- create must return a response object that implements the ModelClientResponseProtocol- cost must return the cost of the response- get_usage must return a dict with the following keys:- prompt_tokens- completion_tokens- total_tokens- cost- modelThis class is used to create a client that can be used by OpenAIWrapper.The response returned from create must adhere to the ModelClientResponseProtocol but can be extended however needed.The message_retrieval method must be implemented to return a list of str or a list of messages from the response."""RESPONSE_USAGE_KEYS = ["prompt_tokens", "completion_tokens", "total_tokens", "cost", "model"]class ModelClientResponseProtocol(Protocol):class Choice(Protocol):class Message(Protocol):content: Optional[str]message: Messagechoices: List[Choice]model: strdef create(self, params: Dict[str, Any]) -> ModelClientResponseProtocol: ...  # pragma: no coverdef message_retrieval(self, response: ModelClientResponseProtocol) -> Union[List[str], List[ModelClient.ModelClientResponseProtocol.Choice.Message]]:"""Retrieve and return a list of strings or a list of Choice.Message from the response.NOTE: if a list of Choice.Message is returned, it currently needs to contain the fields of OpenAI's ChatCompletion Message object,since that is expected for function or tool calling in the rest of the codebase at the moment, unless a custom agent is being used."""...  # pragma: no coverdef cost(self, response: ModelClientResponseProtocol) -> float: ...  # pragma: no cover@staticmethoddef get_usage(response: ModelClientResponseProtocol) -> Dict:"""Return usage summary of the response using RESPONSE_USAGE_KEYS."""...  # pragma: no cover

直白点说,这个协议有四个要求:

  1. 自定义的类中有create()函数,并且这个函数的返回应当是ModelClientResponseProtocol的一种实现
  2. 要有message_retrieval()函数,用于处理响应,并且返回一个列表,聊表中包含字符串或者message对象
  3. 要有cost()函数,返回消耗的费用
  4. 要有get_usage()函数,返回一些字典,key应该来自于[“prompt_tokens”, “completion_tokens”, “total_tokens”, “cost”, “model”]。这个主要用于分析,如果不需要分析使用情况,可以反馈空。

实际案例

我在这里使用的UNIAPI(一个大模型代理)托管的claude模型,但是国内的大模型可以完全套用下面的代码。

代码如下:

"""
本代码用于展示如何自定义一个模型,本模型基于UniAPI,
但是任何支持HTTPS调用的大模型都可以套用以下代码
"""from autogen.agentchat import AssistantAgent, UserProxyAgent
from autogen.oai.openai_utils import config_list_from_json
from types import SimpleNamespace
import requests
import osclass UniAPIModelClient:def __init__(self, config, **kwargs):print(f"CustomModelClient config: {config}")self.api_key = config.get("api_key")self.api_url = "https://api.uniapi.me/v1/chat/completions"self.model = config.get("model", "gpt-3.5-turbo")self.max_tokens = config.get("max_tokens", 1200)self.temperature = config.get("temperature", 0.8)self.top_p = config.get("top_p", 1)self.presence_penalty = config.get("presence_penalty", 1)print(f"Initialized CustomModelClient with model {self.model}")def create(self, params):headers = {"Authorization": f"Bearer {self.api_key}","Content-Type": "application/json",}data = {"max_tokens": self.max_tokens,"model": self.model,"temperature": self.temperature,"top_p": self.top_p,"presence_penalty": self.presence_penalty,"messages": params.get("messages", []),}response = requests.post(self.api_url, headers=headers, json=data)response.raise_for_status()  # Raise an exception for HTTP errorsapi_response = response.json()# Convert API response to SimpleNamespace for compatibilityclient_response = SimpleNamespace()client_response.choices = []client_response.model = self.modelfor choice in api_response.get("choices", []):client_choice = SimpleNamespace()client_choice.message = SimpleNamespace()client_choice.message.content = choice.get("message", {}).get("content")client_choice.message.function_call = Noneclient_response.choices.append(client_choice)return client_responsedef message_retrieval(self, response):"""Retrieve the messages from the response."""choices = response.choicesreturn [choice.message.content for choice in choices]def cost(self, response) -> float:"""Calculate the cost of the response."""# Implement cost calculation if available from your APIresponse.cost = 0return 0@staticmethoddef get_usage(response):# Implement usage tracking if available from your APIreturn {}config_list_custom = config_list_from_json("UNIAPI_CONFIG_LIST.json",filter_dict={"model_client_cls": ["UniAPIModelClient"]},
)assistant = AssistantAgent("assistant", llm_config={"config_list": config_list_custom})
user_proxy = UserProxyAgent("user_proxy",code_execution_config={"work_dir": "coding","use_docker": False,},
)assistant.register_model_client(model_client_cls=UniAPIModelClient)
user_proxy.initiate_chat(assistant,message="Write python code to print hello world",
)

如果想要修改为其他模型,唯一的要求是,这个模型支持HTTP调用,然后把 self.api_url = "https://api.uniapi.me/v1/chat/completions" 替换成你自己的值。

在运行上面的案例代码之前,需要创建 UNIAPI_CONFIG_LIST.json 文件,并且可以被程序读取到。其格式如下:

[{"model": "claude-3-5-sonnet-20240620","api_key": "xxxxxxxxxxxxxxxxxxxxxxxxxxx","temperature": 0.8,"max_tokens": 4000,"model_client_cls": "UniAPIModelClient"}
]

其实这个json本质上就是一个大模型的配置,指定一些必要的参数,其中 model_client_cls 的值要是自定义的模型类的名字,这里不能写错。

以上就是如何在AutoGen使用自定义大模型的全部内容了。

我在这篇博客中只给了具体的案例代码,没有关于更深层次的解读,感兴趣可以阅读官网的文档。

这里想吐槽一下,AutoGen的文档不咋地,不少案例代码都是旧的,没有跟着代码及时更新,有不少坑。

这篇关于如何在AutoGen中使用自定义的大模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110216

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定