XDMA原理

2024-08-27 00:36
文章标签 原理 xdma

本文主要是介绍XDMA原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1. PCIe to AXI Lite Master
    • 1.1. BAR Address to AXI Address
  • 2. PCIe to AXI Memory Mapped Master
  • 3. PCIe to DMA Interface
    • 3.1. Descriptor
    • 3.2. Transfer for H2C
  • 4. MSI-X Vector Table and PBA
  • 5. AXI Lite Slave


介绍XDMA IP核的功能及原理。

根据pg195,XDMA IP 的PCIe to AXI Bridge功能只存在于UltraScale+器件,不支持7系列器件,此处不介绍。

pg195 《DMA/Bridge Subsystem for PCI Express v4.1Product Guide Vivado Design Suite》

根据XDMA IP设置,有如下几种接口,下面依次介绍这几种接口的功能

在这里插入图片描述

XDMA内部构成如下图所示

在这里插入图片描述

PCIe协议详解见高速外设互连接口(Peripheral Component Interconnect express, PCIe)

1. PCIe to AXI Lite Master

这个比较简单,使用AXI Lite接口用于主机访问用户侧的各种寄存器、存储器。XDMA为该接口开启一个BAR空间,通过将PCIe总线域地址映射到FPGA处AXI总线域地址,实现寄存器读写。该接口*addr接口位宽为固定32bit.

IP设置该接口如下,需要指定主机为该BAR空间分配的内存空间大小,以及PCIe到AXI地址转换值。

其中AXI 总线域地址=PCIe总线域地址 偏移+PCIe to AXI Transalation
在这里插入图片描述

手把手教你学会 Xilinx PCIE/XDMA 读写DDR系列(二) ——XDMA详细配置步骤
33.XDMA功能详解2-XDMA概述、功能框图、应用场景

下面介绍XDMA内部是如何通过TLP对用户侧进行访问的。

1.1. BAR Address to AXI Address

以下图FPGA的Block Design为例,XDMA IP 通过AXI SmartConnect连接MIG和BRAM

在这里插入图片描述

假设XDMA 的BAR0映射为M_AXI_LITE接口,且满足:PCIe to AXI Transalation==0x4000_0000

假设主机侧为BAR0分配的PCIe域内存空间为0x1000_0000-0x3000_0000(512MB)。

其中MIG为64M×32bit,寻址空间为256MB,主机侧的PCIe域地址空间为0x1000_0000-0x1FFF_FFFF,在FPGA侧的AXI总线域地址设置为0x4000_0000-0x4FFF_FFFF。

其中Block RAM为16K×32bit,寻址空间为64KB,主机侧的PCIe域地址空间为0x2000_0000-0x2000_FFFF,在FPGA侧设置的AXI总线域地址为0x5000_0000-0x5000_FFFF

AXI 总线域地址就是Vivado里Address Editor标签中命名的地址

如果主机要读取Block RAM中0x10的数据步骤如下:

  1. 先发送Length为0x1、Address为(0x2000_0000+0x40)的MRd TLP至pcie_mgt接口
  2. XDMA检测到TLP中的Address字段命中BAR0后,就将BAR0转化为AXI总线域地址,通过M_AXI_LITE接口发送读请求,其m_axi_araddr[31:0]=(0x4000_0000+(0x2000_0000+0x40-0x1000_0000))=(0x5000_0000+0x40),m_axi_rdata[31:0]返回数据
  3. 之后AXI SmartConnect再将AXI总线域地址转化为M01_AXI的地址,即BRAM Controller侧地址,即M01_AXI_araddr[15:0]=0x40、M01_AXI_arlen[7:0] = 8’d3、M01_AXI_arsize[2:0] =3’d2。
  4. AXI BRAM Controller将BRAM Controller侧地址转化为BRAM的raddr[13:0] = 0x10

2. PCIe to AXI Memory Mapped Master

3. PCIe to DMA Interface

是XDMA实现SG DMA的接口,可以配置为多Channel H2C Stream或C2H Stream类型,也可以配置为AXI4 Master用于所有通道共享。此处我们介绍配置为AXI4 Memory Mapped的SG DMA,对应到XDMA IP上其实就是一个M_AXI接口

首先介绍一下什么是SG DMA。SG DMA与普通DMA不同的是 允许每次 DMA 传输访问多个内存空间,所有任务都结束后,才发出中断。 能够提高CPU工作效率。

SG DMA基本原理是主机在主存中开辟一片空间保存H2C链表和C2H链表,链表以 Descriptor 为基本单元。每个Descriptor包含了要进行DMA的起始地址、长度、目标外设地址、下一个Descriptor在内存空间地址等信息。

主机控制SG DMA启动后,先读取第一个Descriptor、解析、执行DMA传输,传输完成后再从主存中读取第二个Descriptor,往复循环上述过程,直到读取到最后一个Descriptor,完成传输发出中断。

基于Xilinx FPGA的AXI Direct Memory Access (Scatter Gather Engine模式) 行为分析及软件操作流程

3.1. Descriptor

无论是H2C还是C2H,XDMA规定的descriptor格式如下图所示

在这里插入图片描述

在这里插入图片描述
可以看到一个descriptor占32字节

Len[27:0]单位是字节,Nxt_adj[5:0]表示链表后还剩多少个descriptor。

Src_addr[63:0]表示需要执行DMA的数据源地址,如果是H2C DMA该地址为主机侧PCIe总线域地址,若是C2H DMA该地址为FPGA侧AXI总线域地址。

同理,Dst_addr[63:0]表示需要执行DMA的数据目的地址,如果是H2C DMA该地址为FPGA侧AXI总线域地址,若是C2H DMA该地址为主机侧PCIe总线域地址。

Nxt_addr[63:0]表示下一个descriptor地址,只能是主机侧PCIe总线域地址。

可以在XDMA IP的GUI界面的PCIe: DMA标签下选择Descriptor Bypass for H2C和C2H,就可以通过旁路接口输入descriptor,可以不只从host主存获取
36.XDMA原理详解2-DMA描述符、描述符FIFO、描述符旁路详解

3.2. Transfer for H2C

XDMA执行SG DMA是基于通过BAR空间对相关DMA寄存器控制 进行的。

下面以H2C为例,介绍XDMA执行SG DMA整个流程

在这里插入图片描述

图中一个框出多个箭头表示并行执行。

执行过程如下:

Step 1. 主机向主存中存储多块连续数据,假设为100块

Step 2. 主机生成100个Descriptor分别指向这100个数据块,形成descriptors链表放入主存中。

注意每个descriptor.Dst_adr[63:0]是FPGA侧的AXI总线域地址

Step 3. 主机通过MWr TLP命中 DMA对应的BAR空间,向H2C SG DMA寄存器组写入首descriptor起始地址、首descriptor后的descriptor个数

上述信息分别对应XDMA的0x4080、0x4084、0x4088寄存器

在这里插入图片描述
在这里插入图片描述

Step 4. 主机初始化H2C DMA传输,开启对应通道的descriptor获取

包括H2C Channel Control寄存器0x0004、SGDMA Descriptor Controller 寄存器0x6010等等

在这里插入图片描述

Step 5. XDMA根据H2C SG DMA寄存器组的信息,以及获取的descriptor中Nxt_adr[63:0]信息,不断向主机发送MRd TLP包,获取descriptor缓存入FIFO

每次向主机请求多少个Descriptor(每个MRd TLP的Length[9:0]字段)与XDMA自身的Max Read Request Size(MRRS)寄存器0x300C和descriptor FIFO容量有关。

MRRS寄存器如下所示,一般为512B或1024B
在这里插入图片描述
DMA内部descriptor FIFO深度为 AXI Data Width×512供所有Channel共用,例如2个H2C、2个C2H的Gen3 x8,AXI Data Width=256bit,因此有256bit×5122=16KB=32B×512,可放入512个descriptor。

35.XDMA原理详解1-DMA描述符概述及DMA数据传输架构
37.XDMA寄存器详解1-内部寄存器概览

4. MSI-X Vector Table and PBA

5. AXI Lite Slave

这篇关于XDMA原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110130

相关文章

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente