自适应阈值大津法(OTSU)介绍及代码实现

2024-08-27 00:32

本文主要是介绍自适应阈值大津法(OTSU)介绍及代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://blog.csdn.net/a153375250/article/details/50970104

算法原理
最大类间方差法是由日本学者大津于1979年提出的,是一种自适应的阈值确定法,又叫大津法,简称OTSU。

我用最简单的方式解释一下算法原理:

这个算法的思想就是假设阈值T将图像分成了前景和背景两个部分。

求出这两个部分的类间方差:

前景像素个数占比x(前景平均灰度 - 全图平均灰度)2 + 背景像素个数占比x(背景平均灰度 - 全图平均灰度)2

将阈值从0~255遍历一次,使上述类间方差最大的阈值T即为所求。

类间方差计算
我们接下来将算法原理中的类间方差化简为一个比较简单的形式,下面的过程也是代码实现的过程。

定义变量:

总像素数:N
前景像素数:fN
背景像素数:bN
前景像素灰度和:fSum
背景像素灰度和:bSum
前景像素平均灰度:fu
背景像素平均灰度:bu
图像总灰度值:Sum
图像平均灰度:u
前景像素占比:fw
背景图像占比:bw
类间方差:g
1
2
3
4
5
6
7
8
9
10
11
12
前景、背景占比:

前景像素占比:fw = fN/N
背景像素占比:bw = bN/N
1
2
前景、背景占比满足:

fw + bw =1  (1)
1
图片平均灰度值:

图片灰度直方图 : Histogram[256]
图片总灰度值 Sum : for(i=0; i<N; i++){ Sum += Histogram[i];}
图片平均灰度值 u : Sum/N
1
2
3
阈值为T时前景平均灰度:

阈值为T时前景像素数 fN : for(i=0; i<=T; i ++) { fN += Histogram[i];}
阈值为T时前景像素灰度和 fSum : for(i=0; i<=T; i++) { fSum += Histogram[i]*i;}
阈值为T时前景平均灰度 fu : fSum/fN
1
2
3
阈值为T时背景平均灰度:

阈值为T时背景像素数 bN : N-fN
阈值为T时背景像素灰度和 bSum : Sum-fSum
阈值为T时背景平均灰度 bu : bSum/bN    
1
2
3
平均灰度满足:

u = fu*fw + bu*bw  (2)
1
类间方差:

类间方差 g:fw*(fu-u)^2+bw*(bu-u)^2  (3)
1
将(1)(2)带入(3)式:

g = bw*fw*(fu-bu)^2
1
代码实现
假设读入图片为单通道Mat型灰度图,我们可以用以下代码实现:

#include <opencv2/opencv.hpp>  
#include <cv.h>
#include <highgui.h>
#include <cxcore.h>

using namespace std;
using namespace cv;

Mat otsuGray(const Mat src) {
    Mat img = src;
    int c = img.cols; //图像列数
    int r = img.rows; //图像行数
    int T = 0; //阈值
    uchar* data = img.data; //数据指针
    int ftNum = 0; //前景像素个数
    int bgNum = 0; //背景像素个数
    int N = c*r; //总像素个数
    int ftSum = 0; //前景总灰度值
    int bgSum = 0; //背景总灰度值
    int graySum = 0;
    double w0 = 0; //前景像素个数占比
    double w1 = 0; //背景像素个数占比
    double u0 = 0; //前景平均灰度
    double u1 = 0; //背景平均灰度
    double Histogram[256] = {0}; //灰度直方图
    double temp = 0; //临时类间方差
    double g = 0; //类间方差

    //灰度直方图
    for(int i = 0; i < r ; i ++) {
        for(int j = 0; j <c; j ++) {
            Histogram[img.at<uchar>(i,j)]++;
        }
    }
    //求总灰度值
    for(int i = 0; i < 256; i ++) {
        graySum += Histogram[i]*i;
    }

    for(int i = 0; i < 256; i ++) {
        ftNum += Histogram[i];  //阈值为i时前景个数
        bgNum = N - ftNum;      //阈值为i时背景个数
        w0 = (double)ftNum/N; //前景像素占总数比
        w1 = (double)bgNum/N; //背景像素占总数比
        if(ftNum == 0) continue;
        if(bgNum == 0) break;
        //前景平均灰度
        ftSum += i*Histogram[i];
        u0 = ftSum/ftNum;

        //背景平均灰度
        bgSum = graySum - ftSum;
        u1 = bgSum/bgNum;

        g = w0*w1*(u0-u1)*(u0-u1);
        if(g > temp) {
            temp = g;
            T = i;
        }
    }

    for(int i=0; i<img.rows; i++)
    {
        for(int j=0; j<img.cols; j++)
        {
            if((int)img.at<uchar>(i,j)>T)
                img.at<uchar>(i,j) = 255;
            else
                img.at<uchar>(i,j) = 0;
        }
    }
    return img;
}
--------------------- 
作者:Easy-Sir 
来源:CSDN 
原文:https://blog.csdn.net/a153375250/article/details/50970104 
版权声明:本文为博主原创文章,转载请附上博文链接!

这篇关于自适应阈值大津法(OTSU)介绍及代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110119

相关文章

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount