自适应阈值大津法(OTSU)介绍及代码实现

2024-08-27 00:32

本文主要是介绍自适应阈值大津法(OTSU)介绍及代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://blog.csdn.net/a153375250/article/details/50970104

算法原理
最大类间方差法是由日本学者大津于1979年提出的,是一种自适应的阈值确定法,又叫大津法,简称OTSU。

我用最简单的方式解释一下算法原理:

这个算法的思想就是假设阈值T将图像分成了前景和背景两个部分。

求出这两个部分的类间方差:

前景像素个数占比x(前景平均灰度 - 全图平均灰度)2 + 背景像素个数占比x(背景平均灰度 - 全图平均灰度)2

将阈值从0~255遍历一次,使上述类间方差最大的阈值T即为所求。

类间方差计算
我们接下来将算法原理中的类间方差化简为一个比较简单的形式,下面的过程也是代码实现的过程。

定义变量:

总像素数:N
前景像素数:fN
背景像素数:bN
前景像素灰度和:fSum
背景像素灰度和:bSum
前景像素平均灰度:fu
背景像素平均灰度:bu
图像总灰度值:Sum
图像平均灰度:u
前景像素占比:fw
背景图像占比:bw
类间方差:g
1
2
3
4
5
6
7
8
9
10
11
12
前景、背景占比:

前景像素占比:fw = fN/N
背景像素占比:bw = bN/N
1
2
前景、背景占比满足:

fw + bw =1  (1)
1
图片平均灰度值:

图片灰度直方图 : Histogram[256]
图片总灰度值 Sum : for(i=0; i<N; i++){ Sum += Histogram[i];}
图片平均灰度值 u : Sum/N
1
2
3
阈值为T时前景平均灰度:

阈值为T时前景像素数 fN : for(i=0; i<=T; i ++) { fN += Histogram[i];}
阈值为T时前景像素灰度和 fSum : for(i=0; i<=T; i++) { fSum += Histogram[i]*i;}
阈值为T时前景平均灰度 fu : fSum/fN
1
2
3
阈值为T时背景平均灰度:

阈值为T时背景像素数 bN : N-fN
阈值为T时背景像素灰度和 bSum : Sum-fSum
阈值为T时背景平均灰度 bu : bSum/bN    
1
2
3
平均灰度满足:

u = fu*fw + bu*bw  (2)
1
类间方差:

类间方差 g:fw*(fu-u)^2+bw*(bu-u)^2  (3)
1
将(1)(2)带入(3)式:

g = bw*fw*(fu-bu)^2
1
代码实现
假设读入图片为单通道Mat型灰度图,我们可以用以下代码实现:

#include <opencv2/opencv.hpp>  
#include <cv.h>
#include <highgui.h>
#include <cxcore.h>

using namespace std;
using namespace cv;

Mat otsuGray(const Mat src) {
    Mat img = src;
    int c = img.cols; //图像列数
    int r = img.rows; //图像行数
    int T = 0; //阈值
    uchar* data = img.data; //数据指针
    int ftNum = 0; //前景像素个数
    int bgNum = 0; //背景像素个数
    int N = c*r; //总像素个数
    int ftSum = 0; //前景总灰度值
    int bgSum = 0; //背景总灰度值
    int graySum = 0;
    double w0 = 0; //前景像素个数占比
    double w1 = 0; //背景像素个数占比
    double u0 = 0; //前景平均灰度
    double u1 = 0; //背景平均灰度
    double Histogram[256] = {0}; //灰度直方图
    double temp = 0; //临时类间方差
    double g = 0; //类间方差

    //灰度直方图
    for(int i = 0; i < r ; i ++) {
        for(int j = 0; j <c; j ++) {
            Histogram[img.at<uchar>(i,j)]++;
        }
    }
    //求总灰度值
    for(int i = 0; i < 256; i ++) {
        graySum += Histogram[i]*i;
    }

    for(int i = 0; i < 256; i ++) {
        ftNum += Histogram[i];  //阈值为i时前景个数
        bgNum = N - ftNum;      //阈值为i时背景个数
        w0 = (double)ftNum/N; //前景像素占总数比
        w1 = (double)bgNum/N; //背景像素占总数比
        if(ftNum == 0) continue;
        if(bgNum == 0) break;
        //前景平均灰度
        ftSum += i*Histogram[i];
        u0 = ftSum/ftNum;

        //背景平均灰度
        bgSum = graySum - ftSum;
        u1 = bgSum/bgNum;

        g = w0*w1*(u0-u1)*(u0-u1);
        if(g > temp) {
            temp = g;
            T = i;
        }
    }

    for(int i=0; i<img.rows; i++)
    {
        for(int j=0; j<img.cols; j++)
        {
            if((int)img.at<uchar>(i,j)>T)
                img.at<uchar>(i,j) = 255;
            else
                img.at<uchar>(i,j) = 0;
        }
    }
    return img;
}
--------------------- 
作者:Easy-Sir 
来源:CSDN 
原文:https://blog.csdn.net/a153375250/article/details/50970104 
版权声明:本文为博主原创文章,转载请附上博文链接!

这篇关于自适应阈值大津法(OTSU)介绍及代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110119

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

zookeeper端口说明及介绍

《zookeeper端口说明及介绍》:本文主要介绍zookeeper端口说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、zookeeper有三个端口(可以修改)aVNMqvZ二、3个端口的作用三、部署时注意总China编程结一、zookeeper有三个端口(可以

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert