从事大模型研发的技术栈和学习路线

2024-08-26 21:28

本文主要是介绍从事大模型研发的技术栈和学习路线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从事大模型研发的技术栈和学习路线可以分为以下几个部分:

1. 基础知识

  • 数学基础:线性代数、概率论与统计、微积分、优化算法等。
  • 编程技能:Python 是大多数深度学习项目的首选语言,熟悉 Python 编程以及相关的科学计算库(如 NumPy、SciPy、Pandas)是必要的。
  • 机器学习基础:了解机器学习的基本概念、算法和工具,包括监督学习、无监督学习、半监督学习、强化学习等。
  • 深度学习基础:掌握深度学习的核心概念和技术,包括神经网络、反向传播、卷积神经网络、循环神经网络、Transformer 模型等。

2. 自然语言处理 (NLP)

  • NLP 基础:熟悉 NLP 的基本任务和技术,例如文本预处理、词向量表示、语言模型、序列标注、信息抽取等。
  • NLP 框架:了解和掌握至少一个主流的 NLP 框架,如 TensorFlow、PyTorch、Hugging Face 的 Transformers 库等。
  • 大规模 NLP 数据集:了解并能够使用大规模的 NLP 数据集,如 Common Crawl、Wikipedia、BooksCorpus 等。

3. 大模型相关技术

  • 模型架构设计:学习和理解大型神经网络的设计原则和技巧,特别是 Transformer 模型的设计和优化。
  • 分布式训练:掌握分布式训练的概念和技术,包括数据并行、模型并行、梯度累积等。
  • 硬件加速:了解如何使用 GPU、TPU 等硬件加速训练和推理过程。
  • 超参数优化:学习和使用超参数优化的方法和工具,如 Grid Search、Random Search、Bayesian Optimization 等。

4. 大模型开发工具和平台

  • 云服务:熟悉至少一个云服务平台,例如 AWS、Google Cloud、Microsoft Azure 等,以便使用其提供的高性能计算资源和相关服务。
  • 大数据处理:了解如何处理和管理大规模数据集,包括使用 MapReduce、Spark 等分布式计算框架。
  • 自动化工具:熟悉一些自动化工具和平台,例如 AutoML、NVIDIA’s Deep Learning Super Sampling (DLSS) 等,可以帮助简化大模型的开发流程。

5. 实践经验

  • 参与开源项目:参与一些知名的开源大模型项目(如 BERT、GPT-3、CLIP 等),了解大模型的实际开发过程和挑战。
  • 阅读研究论文:定期阅读最新的 NLP 和大模型相关的研究论文,了解前沿的技术和方法。
  • 实践项目:尝试使用现有的大模型进行微调和应用,或者自己从头开始训练一个小规模的语言模型。

6. 进阶学习

  • 深入理解 Transformer:阅读和理解 Transformer 模型的原理和实现细节。
  • 学习大规模分布式训练:深入学习大规模分布式训练的技术和最佳实践。
  • 研究模型压缩和量化:了解如何通过模型压缩和量化来减小大模型的体积和加速推理过程。

7. 专业课程和认证

  • 在线课程:完成一些在线课程,如 Coursera 的 Deep Learning Specialization、Stanford 的 CS224N 等。
  • 认证考试:考虑参加一些相关的认证考试,如 Google 的 TensorFlow Developer Certificate、Microsoft 的 Azure AI Engineer Associate 等。

8. 社区和网络

  • 加入 NLP 和大模型的社区:参与相关的开源社区、讨论组和活动,了解最新的动态和与其他专家交流经验。
  • 建立专业网络:与同行和行业领袖保持联系,参加会议和研讨会,分享你的研究和成果。

总的来说,想要从事大模型研发,需要具备扎实的数学和编程基础,深入理解 NLP 和深度学习的相关技术,并且积极参与实践项目和社区活动。随着技术的发展和更多的资源的可用性,学习和研究大模型的门槛正在逐步降低。

这篇关于从事大模型研发的技术栈和学习路线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109724

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert