python不改变二维数组相对位置,得到对应行(列/元素)满足条件的新数组

本文主要是介绍python不改变二维数组相对位置,得到对应行(列/元素)满足条件的新数组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python不改变二维数组相对位置,得到对应行(列)满足条件的新数组

有时候,程序中会用到不改变二维数组相对位置,得到元素满足对应条件的行。

比如,给定一个坐标数组,要求剔除掉x,y坐标不满足>0条件的坐标。

引子:一维数组

对于一维数组来说,实现这个功能很简单。有多种方法可以选择。

方法一:直接法
A = np.array([1,2,3,4,5,6,0,-2,7,8,9])
result = A[A>0]
# 输出:array([1,2,3,4,5,6,7,8,9])。可以看到已经删掉了小于0的元素 
print(result) 
方法二:where()+数组切片

通过np.where()函数获取满足条件的元素所在的位置,然后利用数组切片找出。

A = np.array([1,2,3,4,5,6,0,-2,7,8,9])
ind = np.where(A>0)
result = A[ind]
# 输出:array([1,2,3,4,5,6,7,8,9])。可以看到已经删掉了小于0的元素 
print(result) 

二维数组

对于二维数组来说,使用上边两个方法都会导致数组展开成一维的,如下。

#首先生成一个2行6列的随机整数组
A= np.random.randint(-4,4,(2,6))
print("A:",A)#每次运行生成的数组不一样
#方法一:
ind = np.where(A>0)
result1 = A[ind]
print("result1:",result1)#方法二:
result2 = A[A>0]
print("result2:",result2)#方法三:同方法二,只是使用了array.nonzero()函数寻找非0索引
ind = A.nonzero()
result3 = A[ind]
print("result3:",result3)

运行结果:

A:
[[ 1 -3  0  1  3  2][ 0  1  1 -3  0  2]]
result1:
array([1, 1, 3, 2, 1, 1, 2])
result2:
array([1, 1, 3, 2, 1, 1, 2])
result3:
array([1, 1, 3, 2, 1, 1, 2])

可以看到,以上三种方法都改变了数组本来的结构。展成了一维数组。

要想维持数组本来的结构,就需要用到 all()any() 函数。

他们的实现原理是:对数组中的每个元素判断的逻辑值再按行(列)进行一个逻辑合并。

可选参数:axis

  • axis =0 列。
  • axis = 1行。

两两组合之下,可以灵活地实现四种功能。比如,对于一个二维数组A来说:

A= np.array([[1,-3,0,1,3,2],[0,1,1,-3,0,2]])
print("A:",A)ind1 = (A>0).all(0)#找出所有元素都大于零的列索引
res1 = A[:,ind1] #得到A元素中每个元素均大于0的列
print("res1:",res1)ind2 = (A>0).any(0)#找出任一元素大于零的列索引
res2 = A[:,ind2]#得到A元素中任一元素大于0的列
print("res2:",res2)ind3 = (A>0).all(1)#找出所有元素都大于零的行索引
res3 = A[ind3,:]#得到A元素中所有元素都大于0的行
print("res3:",res3)ind4 = (A>0).any(1)#找出任一元素大于零的行索引
res4 = A[ind4,:]#得到A元素中任一元素大于0的行
print("res4:",res4)

返回结果如下:

A: [[ 1 -3  0  1  3  2][ 0  1  1 -3  0  2]]res1: 
[[2][2]]res2:[[ 1 -3  0  1  3  2][ 0  1  1 -3  0  2]]res3: []res4: 
[[ 1 -3  0  1  3  2][ 0  1  1 -3  0  2]]

最后,补充一下MATLAB实现类似功能的语句:B = A(:,all(A > 0,1)) ,两者很相似,但是从语法简洁性来看,还是MATLAB更简洁一点。革命尚未成功,python仍需努力啊!

这篇关于python不改变二维数组相对位置,得到对应行(列/元素)满足条件的新数组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108824

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Python下载Pandas包的步骤

《Python下载Pandas包的步骤》:本文主要介绍Python下载Pandas包的步骤,在python中安装pandas库,我采取的方法是用PIP的方法在Python目标位置进行安装,本文给大... 目录安装步骤1、首先找到我们安装python的目录2、使用命令行到Python安装目录下3、我们回到Py

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid