python不改变二维数组相对位置,得到对应行(列/元素)满足条件的新数组

本文主要是介绍python不改变二维数组相对位置,得到对应行(列/元素)满足条件的新数组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python不改变二维数组相对位置,得到对应行(列)满足条件的新数组

有时候,程序中会用到不改变二维数组相对位置,得到元素满足对应条件的行。

比如,给定一个坐标数组,要求剔除掉x,y坐标不满足>0条件的坐标。

引子:一维数组

对于一维数组来说,实现这个功能很简单。有多种方法可以选择。

方法一:直接法
A = np.array([1,2,3,4,5,6,0,-2,7,8,9])
result = A[A>0]
# 输出:array([1,2,3,4,5,6,7,8,9])。可以看到已经删掉了小于0的元素 
print(result) 
方法二:where()+数组切片

通过np.where()函数获取满足条件的元素所在的位置,然后利用数组切片找出。

A = np.array([1,2,3,4,5,6,0,-2,7,8,9])
ind = np.where(A>0)
result = A[ind]
# 输出:array([1,2,3,4,5,6,7,8,9])。可以看到已经删掉了小于0的元素 
print(result) 

二维数组

对于二维数组来说,使用上边两个方法都会导致数组展开成一维的,如下。

#首先生成一个2行6列的随机整数组
A= np.random.randint(-4,4,(2,6))
print("A:",A)#每次运行生成的数组不一样
#方法一:
ind = np.where(A>0)
result1 = A[ind]
print("result1:",result1)#方法二:
result2 = A[A>0]
print("result2:",result2)#方法三:同方法二,只是使用了array.nonzero()函数寻找非0索引
ind = A.nonzero()
result3 = A[ind]
print("result3:",result3)

运行结果:

A:
[[ 1 -3  0  1  3  2][ 0  1  1 -3  0  2]]
result1:
array([1, 1, 3, 2, 1, 1, 2])
result2:
array([1, 1, 3, 2, 1, 1, 2])
result3:
array([1, 1, 3, 2, 1, 1, 2])

可以看到,以上三种方法都改变了数组本来的结构。展成了一维数组。

要想维持数组本来的结构,就需要用到 all()any() 函数。

他们的实现原理是:对数组中的每个元素判断的逻辑值再按行(列)进行一个逻辑合并。

可选参数:axis

  • axis =0 列。
  • axis = 1行。

两两组合之下,可以灵活地实现四种功能。比如,对于一个二维数组A来说:

A= np.array([[1,-3,0,1,3,2],[0,1,1,-3,0,2]])
print("A:",A)ind1 = (A>0).all(0)#找出所有元素都大于零的列索引
res1 = A[:,ind1] #得到A元素中每个元素均大于0的列
print("res1:",res1)ind2 = (A>0).any(0)#找出任一元素大于零的列索引
res2 = A[:,ind2]#得到A元素中任一元素大于0的列
print("res2:",res2)ind3 = (A>0).all(1)#找出所有元素都大于零的行索引
res3 = A[ind3,:]#得到A元素中所有元素都大于0的行
print("res3:",res3)ind4 = (A>0).any(1)#找出任一元素大于零的行索引
res4 = A[ind4,:]#得到A元素中任一元素大于0的行
print("res4:",res4)

返回结果如下:

A: [[ 1 -3  0  1  3  2][ 0  1  1 -3  0  2]]res1: 
[[2][2]]res2:[[ 1 -3  0  1  3  2][ 0  1  1 -3  0  2]]res3: []res4: 
[[ 1 -3  0  1  3  2][ 0  1  1 -3  0  2]]

最后,补充一下MATLAB实现类似功能的语句:B = A(:,all(A > 0,1)) ,两者很相似,但是从语法简洁性来看,还是MATLAB更简洁一点。革命尚未成功,python仍需努力啊!

这篇关于python不改变二维数组相对位置,得到对应行(列/元素)满足条件的新数组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108824

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优