python不改变二维数组相对位置,得到对应行(列/元素)满足条件的新数组

本文主要是介绍python不改变二维数组相对位置,得到对应行(列/元素)满足条件的新数组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python不改变二维数组相对位置,得到对应行(列)满足条件的新数组

有时候,程序中会用到不改变二维数组相对位置,得到元素满足对应条件的行。

比如,给定一个坐标数组,要求剔除掉x,y坐标不满足>0条件的坐标。

引子:一维数组

对于一维数组来说,实现这个功能很简单。有多种方法可以选择。

方法一:直接法
A = np.array([1,2,3,4,5,6,0,-2,7,8,9])
result = A[A>0]
# 输出:array([1,2,3,4,5,6,7,8,9])。可以看到已经删掉了小于0的元素 
print(result) 
方法二:where()+数组切片

通过np.where()函数获取满足条件的元素所在的位置,然后利用数组切片找出。

A = np.array([1,2,3,4,5,6,0,-2,7,8,9])
ind = np.where(A>0)
result = A[ind]
# 输出:array([1,2,3,4,5,6,7,8,9])。可以看到已经删掉了小于0的元素 
print(result) 

二维数组

对于二维数组来说,使用上边两个方法都会导致数组展开成一维的,如下。

#首先生成一个2行6列的随机整数组
A= np.random.randint(-4,4,(2,6))
print("A:",A)#每次运行生成的数组不一样
#方法一:
ind = np.where(A>0)
result1 = A[ind]
print("result1:",result1)#方法二:
result2 = A[A>0]
print("result2:",result2)#方法三:同方法二,只是使用了array.nonzero()函数寻找非0索引
ind = A.nonzero()
result3 = A[ind]
print("result3:",result3)

运行结果:

A:
[[ 1 -3  0  1  3  2][ 0  1  1 -3  0  2]]
result1:
array([1, 1, 3, 2, 1, 1, 2])
result2:
array([1, 1, 3, 2, 1, 1, 2])
result3:
array([1, 1, 3, 2, 1, 1, 2])

可以看到,以上三种方法都改变了数组本来的结构。展成了一维数组。

要想维持数组本来的结构,就需要用到 all()any() 函数。

他们的实现原理是:对数组中的每个元素判断的逻辑值再按行(列)进行一个逻辑合并。

可选参数:axis

  • axis =0 列。
  • axis = 1行。

两两组合之下,可以灵活地实现四种功能。比如,对于一个二维数组A来说:

A= np.array([[1,-3,0,1,3,2],[0,1,1,-3,0,2]])
print("A:",A)ind1 = (A>0).all(0)#找出所有元素都大于零的列索引
res1 = A[:,ind1] #得到A元素中每个元素均大于0的列
print("res1:",res1)ind2 = (A>0).any(0)#找出任一元素大于零的列索引
res2 = A[:,ind2]#得到A元素中任一元素大于0的列
print("res2:",res2)ind3 = (A>0).all(1)#找出所有元素都大于零的行索引
res3 = A[ind3,:]#得到A元素中所有元素都大于0的行
print("res3:",res3)ind4 = (A>0).any(1)#找出任一元素大于零的行索引
res4 = A[ind4,:]#得到A元素中任一元素大于0的行
print("res4:",res4)

返回结果如下:

A: [[ 1 -3  0  1  3  2][ 0  1  1 -3  0  2]]res1: 
[[2][2]]res2:[[ 1 -3  0  1  3  2][ 0  1  1 -3  0  2]]res3: []res4: 
[[ 1 -3  0  1  3  2][ 0  1  1 -3  0  2]]

最后,补充一下MATLAB实现类似功能的语句:B = A(:,all(A > 0,1)) ,两者很相似,但是从语法简洁性来看,还是MATLAB更简洁一点。革命尚未成功,python仍需努力啊!

这篇关于python不改变二维数组相对位置,得到对应行(列/元素)满足条件的新数组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108824

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.