Python相关系数导图

2024-08-26 09:52
文章标签 python 导图 相关系数

本文主要是介绍Python相关系数导图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 量化变量和特征关联
  2. 绘图对比皮尔逊相关系数、斯皮尔曼氏秩和肯德尔秩
  3. 汽车性价比相关性矩阵热图
  4. 大流行病与资产波动
  5. 城镇化模型预测交通量
  6. 宝可梦类别特征非线性依赖性捕捉
  7. 向量加权皮尔逊相关系数
  8. 量化图像相似性
    在这里插入图片描述

Python皮尔逊-斯皮尔曼-肯德尔

皮尔逊相关系数

在统计学中,皮尔逊相关系数 是一种用于测量两组数据之间线性相关性的相关系数。它是两个变量的协方差与其标准差乘积的比率;因此,它本质上是协方差的标准化测量,其结果始终介于 -1 和 1 之间。与协方差本身一样,该测量只能反映变量的线性相关性,而忽略了许多其他类型的关系或相关性。举一个简单的例子,人们会期望来自小学的一组儿童的年龄和身高的皮尔逊相关系数明显大于 0,但小于 1(因为 1 表示不切实际的完美相关性)。

皮尔逊相关系数是两个变量的协方差除以其标准差的乘积。定义的形式涉及“乘积矩”,即均值调整后的随机变量乘积的均值(关于原点的一阶矩),因此名称中带有修饰词“乘积矩”。

皮尔逊相关系数应用于样本时,通常用 r x y r_{x y} rxy 表示,可称为样本相关系数或样本皮尔逊相关系数。通过将基于样本的协方差和方差的估计值代入上述公式,我们可以得到 r x y r_{x y} rxy 的公式。给定由 n n n 对组成的配对数据 { ( x 1 , y 1 ) , … , ( x n , y n ) } \left\{\left(x_1, y_1\right), \ldots,\left(x_n, y_n\right)\right\} {(x1,y1),,(xn,yn)},定义 r x y r_{x y} rxy
r x y = ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) ∑ i = 1 n ( x i − x ˉ ) 2 ∑ i = 1 n ( y i − y ˉ ) 2 r_{x y}=\frac{\sum_{i=1}^n\left(x_i-\bar{x}\right)\left(y_i-\bar{y}\right)}{\sqrt{\sum_{i=1}^n\left(x_i-\bar{x}\right)^2} \sqrt{\sum_{i=1}^n\left(y_i-\bar{y}\right)^2}} rxy=i=1n(xixˉ)2 i=1n(yiyˉ)2 i=1n(xixˉ)(yiyˉ)
要计算 Pearson’s R 相关系数,使用 scipy.stats 库中的 pearsonr 函数。

import numpy as np
from scipy.stats import pearsonrx = np.array([1, 2, 3, 4, 5])
y = np.array([2, 3, 4, 5, 6])correlation_coefficient, _ = pearsonr(x, y)
print("Pearson's Correlation Coefficient:", correlation_coefficient)

这里的输出显示了完美的正相关性,其中当一个变量增加 1 时,另一个变量也增加相同的量。

Pearson's Correlation Coefficient: 1.0

绘图

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import pearsonr
import seaborn as snsnp.random.seed(0)
x_neg = np.linspace(0, 10, 50)
y_neg = -2 * x_neg + 10 + np.random.normal(0, 2, 50)x_pos = np.linspace(0, 10, 50)
y_pos = 2 * x_pos + np.random.normal(0, 2, 50)x_no_corr = np.linspace(0, 10, 50)
y_no_corr = np.random.normal(0, 2, 50)corr_coeff_neg, _ = pearsonr(x_neg, y_neg)
corr_coeff_pos, _ = pearsonr(x_pos, y_pos)
corr_coeff_no_corr, _ = pearsonr(x_no_corr, y_no_corr)fig, axes = plt.subplots(1, 3, figsize=(15, 5))sns.regplot(x=x_neg, y=y_neg, ax=axes[0], color='red', scatter_kws={'s': 15}, line_kws={'color': 'blue'}, ci=95)
axes[0].set_xlabel('X')
axes[0].set_ylabel('Y')
axes[0].set_title(f"Negative Correlation (r = {corr_coeff_neg:.2f})")sns.regplot(x=x_pos, y=y_pos, ax=axes[1], color='green', scatter_kws={'s': 15}, line_kws={'color': 'blue'}, ci=95)
axes[1].set_xlabel('X')
axes[1].set_ylabel('Y')
axes[1].set_title(f"Positive Correlation (r = {corr_coeff_pos:.2f})")sns.regplot(x=x_no_corr, y=y_no_corr, ax=axes[2], color='blue', scatter_kws={'s': 15}, line_kws={'color': 'blue'}, ci=95)
axes[2].set_xlabel('X')
axes[2].set_ylabel('Y')
axes[2].set_title(f"No Correlation (r = {corr_coeff_no_corr:.2f})")plt.tight_layout()
plt.show()

斯皮尔曼秩相关系数

在统计学中,斯皮尔曼等级相关系数或斯皮尔曼 ρ \rho ρ,通常用希腊字母 ρ \rho ρ (rho) 或 r s r_s rs 表示,是一个排名相关性的非参数度量(两个变量秩之间的统计依赖性)。它评估使用单调函数描述两个变量之间的关系的程度。

斯皮尔曼相关系数定义为秩变量之间的皮尔逊相关系数。对于大小为 n n n 的样本, n n n 对原始分数 ( X i , Y i ) \left(X_i, Y_i\right) (Xi,Yi) 转换为秩 $R \left[X_i\right], R \left[Y_i\right] $ ,于是 r s r_s rs 计算为
r s = ρ [ R [ X ] , R [ Y ] ] = cov ⁡ [ R [ X ] , R [ Y ] ] σ R [ X ] σ R [ Y ] r_s=\rho[ R [X], R [Y]]=\frac{\operatorname{cov}[ R [X], R [Y]]}{\sigma_{ R [X]} \sigma_{ R [Y]}} rs=ρ[R[X],R[Y]]=σR[X]σR[Y]cov[R[X],R[Y]]

要计算斯皮尔曼的秩相关性,使用 scipy.stats 库中的 Spearmanr 函数。

from scipy.stats import spearmanrx = [10, 20, 30, 40, 50]
y = [5, 15, 25, 35, 45]rho, p_value = spearmanr(x, y)print(f"Spearman's Rank Correlation Coefficient: {rho}")
print(f"P-value: {p_value}")

解释 ρ \rho ρ 结果:

  • ρ \rho ρ:当一个变量增加时,另一个变量也会增加,
  • ρ \rho ρ:当一个变量增加时,另一个变量往往会减少。
  • ρ \rho ρ=0:没有单调关系。

肯德尔秩相关系数

在统计学中,肯德尔秩相关系数通常称为肯德尔 τ 系数(以希腊字母 τ 命名,即 tau),是一种用于测量两个测量量之间的序数关联的统计数据。τ 检验是一种基于 τ 系数的统计依赖性非参数假设检验。它是秩相关的度量:按每个量对数据进行排序时,数据排序的相似性。

要计算肯德尔秩相关系数,使用 scipy.stats 库中的 kendalltau 函数。

import numpy as np
from scipy.stats import kendalltaux = np.array([1, 2, 3, 4, 5])
y = np.array([2, 3, 1, 5, 4])tau, p_value = kendalltau(x, y)print(f"Kendall's Tau (τ): {tau:.2f}")
print(f"P-value: {p_value:.4f}")

👉更新:亚图跨际

这篇关于Python相关系数导图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108225

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.