代码随想录算法训练营第16天 | 第六章 二叉树 part06

2024-08-26 07:44

本文主要是介绍代码随想录算法训练营第16天 | 第六章 二叉树 part06,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码随想录算法训练营第16天 | 第六章 二叉树 part06

    • 530.二叉搜索树的最小绝对差
    • 501.二叉搜索树中的众数
      • 普通二叉树
      • 搜索二叉树
    • 236. 二叉树的最近公共祖先

530.二叉搜索树的最小绝对差

需要领悟一下二叉树遍历上双指针操作,优先掌握递归
题目链接/文章讲解:link
视频讲解:link

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int result =INT_MAX;TreeNode* pre;void traversal(TreeNode* cur){if (cur==nullptr)return;traversal(cur->left);if (pre!=nullptr)result=abs(cur->val-pre->val)>result?result:abs(cur->val-pre->val);pre=cur;traversal(cur->right);}int getMinimumDifference(TreeNode* root) {traversal(root);return result;}
};

中序遍历能够按照递增顺序访问节点的值。因此,最小绝对差一定是相邻节点之间的差值,写的时候才注意到,完全没必要用abs函数求绝对值。

int getMinimumDifference(TreeNode* root) {stack<TreeNode*> stk;TreeNode* cur = root;TreeNode* pre = nullptr;int result = INT_MAX;while (!stk.empty() || cur != nullptr) {while (cur != nullptr) {stk.push(cur);cur = cur->left;}cur = stk.top();stk.pop();  if (pre != nullptr) {result = min(result, abs(cur->val - pre->val));}pre = cur;        cur = cur->right;}return result;
}

使用栈来实现中序遍历的迭代版本,从而避免栈溢出问题。同时避免代码中使用了全局变量 pre 和 result,这可以将它们作为函数参数传递=。

501.二叉搜索树中的众数

和 530差不多双指针思路,不过 这里涉及到一个很巧妙的代码技巧。
如果不是二叉搜索树,我也想到的最直观的方法一定是把这个树都遍历了,用map统计频率,把频率排个序,最后取前面高频的元素的集合。
可以先自己做做看,然后看视频讲解。

普通二叉树

这也是一个难题,如果树中有不止一个众数,可以按 任意顺序 返回。遍历 unordered_map,寻找频率最大的节点值。使用 keyVector.clear() 清空之前的众数,如果发现有更新的更大频率值,就将新的值加入 vector。如果遇到相同频率的值,则追加到 keyVector

link
视频讲解:link

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:
void searchBST(TreeNode* cur, unordered_map<int, int>& map) { // 前序遍历if (cur == NULL) return ;map[cur->val]++; // 统计元素频率searchBST(cur->left, map);searchBST(cur->right, map);return ;
}                  vector<int> findMode(TreeNode* root) {std::unordered_map<int, int> map;searchBST(root, map);int maxKey = map.begin()->second;  // 初始将第一个键作为最大值std::vector<int> keyVector; // 遍历unordered_mapfor (const auto& pair : map) {if (pair.second > maxKey) {maxKey = pair.second;     keyVector.clear();   keyVector.push_back(pair.first);  } else if (pair.second == maxKey) {keyVector.push_back(pair.first);}}return keyVector;}
};

使用 unordered_map<int, int> 来存储每个节点值以及它出现的次数。map[cur->val]++ 这一步递增节点值 val 的频率。

搜索二叉树

想到搜索二叉树,首先想到中序遍历,每一次 弄一个指针指向前一个节点,这样每次cur(当前节点)才能和pre(前一个节点)作比较。而且初始化的时候pre = NULL,这样当pre为NULL时候,我们就知道这是比较的第一个元素。如果 频率count 等于 maxCount(最大频率),当然要把这个元素加入到结果集中(以下代码为result数组).频率count 大于 maxCount的时候,不仅要更新maxCount,而且要清空结果集(以下代码为result数组),因为结果集之前的元素都失效了。
count = 0;
maxCount = 0;
pre = NULL;
result.clear();//看了代码随想录的代码,确实不能忘了全局变量初始化,因为我们写的是子函数,得要被调用很多次。第一次被用完,再一次调用要记得初始化。

代码看着挺麻烦,实际上只要把思路给搞懂,仅仅是麻烦不复杂。中序遍历,判断最大清空或者导入数组,就这两部分。外加上全局变量的设定和初始化。

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:
TreeNode* pre;
int maxCount = 0; 
int count = 0; 
vector<int> result;
void searchBST(TreeNode* cur) {if (cur == NULL) return ;searchBST(cur->left); if (pre == NULL) { count = 1; } else if (pre->val == cur->val) { count++;} else { count = 1;}pre = cur; // 更新上一个节点if (count == maxCount) { // 如果和最大值相同,放进result中result.push_back(cur->val);}if (count > maxCount) { // 如果计数大于最大值频率maxCount = count;  result.clear();     result.push_back(cur->val);}      searchBST(cur->right);      return;}vector<int> findMode(TreeNode* root) {count = 0;maxCount = 0;pre = nullptr; // 记录前一个节点result.clear();searchBST(root);return result;}
};

236. 二叉树的最近公共祖先

本题其实是比较难的,可以先看视频讲解

link
视频讲解:link
先想下思路如果找到一个节点,发现左子树出现结点p,右子树出现节点q,或者 左子树出现结点q,右子树出现节点p,那么该节点就是节点p和q的最近公共祖先。
在这里插入图片描述
最小公共祖先,需要从底向上遍历,那么二叉树,只能通过后序遍历(即:回溯)实现从底向上的遍历方式。

在回溯的过程中,必然要遍历整棵二叉树,即使已经找到结果了,依然要把其他节点遍历完,因为要使用递归函数的返回值(也就是代码中的left和right)做逻辑判断。

要理解如果返回值left为空,right不为空为什么要返回right,为什么可以用返回right传给上一层结果

class Solution {
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {if (root == q || root == p || root == NULL) return root;TreeNode* left = lowestCommonAncestor(root->left, p, q);TreeNode* right = lowestCommonAncestor(root->right, p, q);if (left != NULL && right != NULL) return root;if (left == NULL && right != NULL) return right;else if (left != NULL && right == NULL) return left;else  { //  (left == NULL && right == NULL)return NULL;}}
};

这题很巧妙,如果当前节点是 p 或 q,或者当前节点为空(root == NULL),直接返回当前节点作为结果。当前节点如果是其中一个目标节点,说明找到了一个目标节点,此时可能是公共祖先。 递归地在左子树 root->left 和右子树 root->right 上分别查找目标节点 p 和 q,将结果分别存储在 left 和 right。就是一层层往下查。 如果发现左边找到了一个,右边找到了一个,那就返回当前结点。 如果发现都是在左边找到的如果 left != NULL && right != NULL,说明 p 和 q 分别在当前节点的左右子树中,所以当前节点 root 就是它们的最近公共祖先。 如果 left == NULL && right != NULL,说明 p 和 q 都在右子树中,返回 right 作为结果。 如果 left != NULL && right == NULL,说明 p 和 q 都在左子树中,返回 left 作为结果。 如果 left == NULL && right == NULL,说明在当前节点的子树中没有找到 p 或 q,返回 NULL。

这篇关于代码随想录算法训练营第16天 | 第六章 二叉树 part06的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107962

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

CSS自定义浏览器滚动条样式完整代码

《CSS自定义浏览器滚动条样式完整代码》:本文主要介绍了如何使用CSS自定义浏览器滚动条的样式,包括隐藏滚动条的角落、设置滚动条的基本样式、轨道样式和滑块样式,并提供了完整的CSS代码示例,通过这些技巧,你可以为你的网站添加个性化的滚动条样式,从而提升用户体验,详细内容请阅读本文,希望能对你有所帮助...

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT