ICAIndependent Component Analysis与fMRI

2024-08-26 04:32

本文主要是介绍ICAIndependent Component Analysis与fMRI,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

From https://pnrc.cchmc.org/files/documents/summer-training-course/01_GIFT_FNC_yw.pdf

ICA(独立成分分析) finds the independent components (also called factors, latent variables or sources) by maximizing the statistical independence of the estimated components

目的: 从线性组合中分离出信号源

前提假设
1. 是线性组合起来的(Linear mixing)
2. 各成分之间相互统计独立(independence)
3. 各信号是非高斯分布的(Non-gaussian)

两种形式:(以定义独立(independence)的方式来划分)
1. 最小化互信息量(mutual information) — >infomax
2. 最大化非高斯性(non-Gaussianity)—> FastICA

ICA v.s. PCA:

  • Principle component Analysis: find the components which can explain
    the maximum amount of variance possible presented in the observed
    data.
  • Both are subspace projection techniques.
  • Basic goal of PCA is to decorrelate the signal by projecting the data onto
    orthogonal axes, while the goal of ICA is to find statistically independent
    components from the signal.
  • PCA: minimize the reprojection error from compressed data; ICA:
    minimize the statistical dependence between the ICs.
  • PCs are orthogonal and ranked in order; ICs are statistical independent,
    but not orthogonal to each other and not ranked.
  • There is no closed form expression to find M (iterative algorithms).
  • Important property: the new sets of components are uncorrelated with
    each other (thus PCA is often used in the pre-processing procedure of
    ICA).

ICA 在 fMRI 数据分析中的应用:

好处: no assumptions about the form of the hemodynamic response function (HRF) which is needed for generalized linear modeling (GLM).

目的: to identify a number of unknown sources of signal, ICA assumes that these sources are mutually and statistically independent in space (sICA) or time (tICA)

sICA 更prefer一点 because temporal
points (few hundreds, corresponding to each occurrence of a functional image acquisition) are small compared to spatial locations (more than millions voxels in a functional image).

ICA 软件包:
  • GIFT (http://ictab.sourceforge.net)
    Matlab, multiple ICA algorithms (infomax, fastica, …etc.)
    Graphic User Interface (GUI) and sorting options
  • AnalyzeFMRI (http://www.stats.ox.ac.uk/~marchinini/software.html)
    R, FastICA
  • BrainVoyager (http://www.brainvoyager.com)
    Commercial (not free, but FDA approved), FastICA
  • ICALAB
    Matlab, many ICA algorithms, no user-friendly fMRI data display
  • FSL melodic (http://www.fmrib.ox.ac.uk/analysis/research/melodic)
    C, FastICA
IC的数量:
  • 太多: over-splitting
  • 太少: over-clumping
  • 对一般 fMRI 数据来说,20 - 40个component都是合理的
  • 有相关算法可以帮助估计数量(GIFT软件中含有)
    • Akaike’s information criterion (AIC)
    • Minimum description length (MDL)
    • Bayesian information criterion (BIC)

(See more in V.D. Calhoun, et al. (2001) HBM, vol.14:140-151)

预处理
  • Centering (subtract the mean to create a zero mean signal)
    • Simplify the ICA analysis (zero mean variable – so ICs are zeromean
      too according to the equation [take expectations on both
      sides of the Y=MX equation).
  • Whitening (transform Y linearly so that new Y is white)
  • Dimension reduction can be achieved using Principle Component Analysis or Singular Value Decomposition (to make sure its components are uncorrelated and their
    variances equal unity).

Group ICA

Group ICA 思路

这篇关于ICAIndependent Component Analysis与fMRI的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107552

相关文章

context:component-scan使用说明!

<!-- 使用annotation 自动注册bean, 并保证@Required、@Autowired的属性被注入 --> <context:component-scan base-package="com.yuanls"/> 在xml配置了这个标签后,spring可以自动去扫描base-pack下面或者子包下面的java文件,如果扫描到有@Component @Controll

Versioned Staged Flow-Sensitive Pointer Analysis

VSFS 1.Introduction2.Approach2.1.相关概念2.2.VSFS 3.Evaluation参考文献 1.Introduction 上一篇blog我介绍了目前flow-sensitive pointer analysis常用的SFS算法。相比IFDS-based方法,SFS显著通过稀疏分析提升了效率,但是其内部依旧有许多冗余计算,留下了很大优化空间。 以

[UVM]6.component driver monitor sequencer agent scoreboard env test

1.知识点回顾 (1)component需要有parent,因为参加构成组件,所以需要(继承); (2)object与component之间间隔report_object。 2.组件家族 (1)构建寄存器模型 :uvm_reg_predictor;激励器:driver/random_stimulus/sequencer_base/sequencer;监测器:monitor;

OpenCV_连通区域分析(Connected Component Analysis-Labeling)

申明:本文非笔者原创,原文转载自:http://blog.csdn.net/icvpr/article/details/10259577 OpenCV_连通区域分析(Connected Component Analysis/Labeling) 【摘要】 本文主要介绍在CVPR和图像处理领域中较为常用的一种图像区域(Blob)提取的方法——连通性分析法(连通区域标

MATH36022 Numerical Analysis 2 Approximation of Functions – Week 3 Exercises

Show that the Chebyshev polynomials are orthogonal on ( − 1 , 1 ) (−1, 1) (−1,1) with respect to the weight function ( 1 − x 2 ) − 1 / 2 (1 − x^2)^{−1/2} (1−x2)−1/2. Ans: T n ( x ) = cos ⁡ ( n arcc

《Data Structure Algorithm Analysis in C》Chap.10笔记

5大算法:贪婪 Greedy,分治 Divide and conquer,动态规划 Dynamic Programming,随机 Randomized,回溯 Backtracking。 每一个小节都是一个具体的问题,应当仔细看,待看的:10.2.2-4,10.3,10.4.3,10.5.2。

UE的Gameplay框架(二) —— Actor和Component

这篇博客聊一下UE的Gameplay框架很重要的一部分 Actor 和 Component 文章目录 ActorComponentSceneComponent注册组件 Actor生命周期参考资料 Actor 如UE文档所述,所有可以放入关卡的对象都是 Actor,比如摄像机、静态网格体、玩家起始位置。Actor 支持三维变换,例如平移、旋转和缩放。在 C++

05.德国博士练习_06_mapping_analysis

文章目录 1. exercise01: mapping multi-fields2. exercise02: nested and join mapping3. exercise03: custom analyzer 1. exercise01: mapping multi-fields # ** EXAM OBJECTIVE: MAPPINGS AND TEXT ANALYS

MATH36022 Numerical Analysis 2 Approximation of Functions – Week 2 Exercises

Attempt these exercises in advance of the tutorial in Week 3 Find the best L ∞ L_\infin L∞​ approximation to f ( x ) = x n + 1 + ∑ k = 0 n a k x k f (x) = x^{n+1} + \sum_{k=0}^na_kx^k f(x)=xn+1+∑k=

spring注解中@component

spring注解中@component spring注解中@component就是bai说把这个类交给Spring管理,du又一次起个名字叫zhiuserManager,因为不清楚这个类是属于哪个dao层面,所以就用@Component。 因为在持久层、业务层和控制层中,分别采用@Repository、@Service和@Control