数字验证:一文弄懂UVM的phase机制

2024-08-25 20:36

本文主要是介绍数字验证:一文弄懂UVM的phase机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 9大phase

1.1 整体介绍

        uvm中的phase共有9种,按照是否消耗仿真时间可以分为function phasetask phase。其中只有run_phase是耗时的,给DUT施加激励和检测输出也是在这个phase里完成的。

        UVM整体框架的运行都是从tb中的一句run_test("my_test")开始 ,那么在这句程序背后发生了什么呢?

        首先uvm的树根uvm_root类对象uvm_top创建了uvm_test_top,这一过程体现在仿真中就是在0时刻创建。接着引入的phase机制清晰地实现UVM树的层次例化,同时将仿真过程层次化。具体而言,uvm_top从时间和空间两个维度规定了执行顺序。时间上,仿真时不同phase按照某种时间顺序执行。空间上,仿真时同—phase不同组件按照某种层次顺序执行。

        而这一切都是由UVM自动完成的,整体流程就是先例化uvm_top,之后例化uvm_test_top,之后全部component按照一定顺序实现build_phase之后,全部component再按照定顺序实现connect_phase()等等,直到最终的$finish()

以一个case举例,包含的phase的执行顺序代码可能如下:

class my_case0 extends base_test;string tID = get_type_name();virtual function void build_phase(uvm_phase phase);super.build_phase(phase);uvm_info(tID, "build_phase is executed", UVM_LOW)endfunctionvirtual function void start_of_simulation_phase(uvm_phase phase);super.start_of_simulation_phase(phase);uvm_info(tID, "start_of_simulation_phase is executed", UVM_LOW)endfunctionvirtual task run_phase(uvm_phase phase);`uvm_info(tID, "run_phase is executed", UVM_LOW)endtaskvirtual task pre_reset_phase(uvm_phase phase);`uvm_info(tID, "pre_reset_phase is executed", UVM_LOW)endtaskvirtual task post_shutdown_phase(uvm_phase phase);`uvm_info(tID, "post_shutdown_phase is executed", UVM_LOW)endtaskvirtual function void extract_phase(uvm_phase phase);super.extract_phase(phase);`uvm_info(tID, "extract_phase is executed", UVM_LOW)endfunctionvirtual function void final_phase(uvm_phase phase);super.final_phase(phase);`uvm_info(tID, "final_phase is executed", UVM_LOW)endfunctionendclass

其中run_phase又可以分成12个小phase,他们是并行执行的关系:

forkbeginrun_phase();endbeginpre_reset_phase();reset_phase();post_reset_phase();pre_configure_phase();configure_phase();post_configure_phase();pre_main_phase();main_phase();post_main_phase();pre_shutdown_phase();shutdown_phase();post_shutdown_phase();end
join

        当然,并不是所有的phase都一定会被使用到,在验证时使用频率最高的phase一般是:build_phase,connect_phase,main_phase

        UVM这么做的好处是什么呢?一是方便验证工程师将不同的代码写进对应的phase中,二是有利于其他验证方法学向UVM迁移。因为它的阶段划分非常细致,在迁移时总能找到一个phase对应原来方法学中的仿真阶段。

1.2 run_phase

        UVM为什么要引入run_phase里的12个小phase呢?

        这有助于实现更加精细化的控制:reset、configure、main、shutdown四个phase是核心,可以模拟DUT复位,配置,运行,断电的行为。在没有这些细分的phase之前,这些操作要在scoreboard、reference model等加入一些额外的代码来保证验证平台不会出错。但是现在分别在scoreboard、reference model及其他部分的reset_ phase写好相关代码,之后如果想做一次复位操作,那么只要通过phase的跳转,就会自动跳转回reset_phase。

2. phase的执行顺序

        9个phase之间是自上向下的执行顺序,这是一种的时间的概念。而每种phase本身又具有执行顺序,这是一种空间的概念,描述的是运行某一phase时component从顶层到底层或是底层到顶层的执行顺序。

名称类型执行顺序功能
build_phasefunction自上向下创建结构
connect_phasefunction自下向上建立组件的连接
end_of_elaboration_phasefunction自下向上测试环境微调
start_of_simulation_phasefunction自下向上准备测试环境的仿真
run_phasetask自下向上激励设计
extract_phasefunction自下向上收集数据
check_phasefunction自下向上检查不期望的行为
report_phasefunction自下向上报告测试结果
final_phasefunction自上向下完成测试,结束仿真

        为什么需要规定是这样的执行顺序呢?以build_phase为例,driver和monitor作为agent中的成员变量,需要在agent的build_phase中进行实例化。如果driver的build_phase在agent的build_phase之前执行,此时driver本身还没有实例化,这样调用就会发生错误。

        可以发现其实大部分的phase都是以自下向上的顺序执行,包括run_phase。但与其它function phase不同的是,run_phase消耗时间,并不是等drv之类的run_phase执行完才执行agt的run_phase,而是将这些run_phase通过fork join_none的形式全部启动,同时运行。

        对于同一个component来说,12个小phase是顺序执行的,但这不意味着前一个phase执行结束后就会马上执行下一个phase。以component A 和 B举例,A的main_phase在100时刻执行结束,B的main_phase在400时刻执行结束,那么A和B的post_main_phase都会在400时刻才开始执行。在100~400时刻中,A处于等待B的状态;但从整个平台来看,各个phase之间当然不存在空白。

        而这种同步不仅适用于不同component之间,对同一个component的run_phase和post_shutdown_phase来说也需要实现同步:只有当run_phase和它的post_shutdown_phase都完成后才会进入下一个phase。

3. phase机制的必要性

        验证平台非常复杂,要搭建一个验证平台是一件相当繁杂的事情,要正确地掌握并理顺这些步骤是一个相当艰难的过程。比如在env中会实例化agent、scoreboard、reference model等,agent下面又会有sequencer、driver、monitor。并且,这些组件之间还有连接关系,如agent中monitor的输出要送给scoreboard或reference model,这种通信的前提是要先将reference model和scoreboard连接在一起。那么可以:

scoreboard = new;
reference_model = new;
reference_model.connect(scoreboard);
agent = new;
agent.driver = new;
agent.monitor = new;
agent.monitor.connect(scoreboard);

        这里面反应出来的问题就是最后一句话一定要放在最后写,因为连接的前提是所有的组件已经实例化。但是,reference_model.connect(scoreboard)的要求则没有那么高,只需要在上述代码中reference_model = new之后任何一个地方编写即可。可以看出,代码的书写顺序会影响代码的实现。若要将代码顺序的影响降低到最低,可以按照如下方式:

scoreboard = new;
reference_model = new;
agent = new;
agent.driver = new;
agent.monitor = new;
reference_model.connect(scoreboard);
agent.monitor.connect(scoreboard);

        UVM采用了这种方法,它将前面实例化的部分都放在build_phase来做,而连接关系放在connect_phase来做,这就是phase机制的优势:在不同的时间做不同的事。

        遵循UVM的代码顺序划分原则:build做实例化,connect做连接等等可以很大程度上减少验证平台开发者的工作量,并且便于我们理解运用。

这篇关于数字验证:一文弄懂UVM的phase机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106594

相关文章

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片

一文带你迅速搞懂路由器/交换机/光猫三者概念区别

《一文带你迅速搞懂路由器/交换机/光猫三者概念区别》讨论网络设备时,常提及路由器、交换机及光猫等词汇,日常生活、工作中,这些设备至关重要,居家上网、企业内部沟通乃至互联网冲浪皆无法脱离其影响力,本文将... 当谈论网络设备时,我们常常会听到路由器、交换机和光猫这几个名词。它们是构建现代网络基础设施的关键组成

基于Python实现数字限制在指定范围内的五种方式

《基于Python实现数字限制在指定范围内的五种方式》在编程中,数字范围限制是常见需求,无论是游戏开发中的角色属性值、金融计算中的利率调整,还是传感器数据处理中的异常值过滤,都需要将数字控制在合理范围... 目录引言一、基础条件判断法二、数学运算巧解法三、装饰器模式法四、自定义类封装法五、NumPy数组处理

深入理解go中interface机制

《深入理解go中interface机制》本文主要介绍了深入理解go中interface机制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前言interface使用类型判断总结前言go的interface是一组method的集合,不

C# async await 异步编程实现机制详解

《C#asyncawait异步编程实现机制详解》async/await是C#5.0引入的语法糖,它基于**状态机(StateMachine)**模式实现,将异步方法转换为编译器生成的状态机类,本... 目录一、async/await 异步编程实现机制1.1 核心概念1.2 编译器转换过程1.3 关键组件解析

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理