分库分表问题汇总---更新中

2024-08-25 13:48

本文主要是介绍分库分表问题汇总---更新中,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分布式全局唯一ID
往往直接使用数据库自增特性来生成主键ID,而在分库分表的环境中,数据分布在不同的分片上,不能再借助数据库自增长特性直接生成,否则会造成不同分片上的数据表主键会重复。

  1. Twitter的Snowflake(又名“雪花算法”)

  2. UUID/GUID(一般应用程序和数据库均支持)

  3. MongoDB ObjectID(类似UUID的方式)

  4. Ticket Server(数据库生存方式,Flickr采用的就是这种方式)

常见分片规则和策略

分片字段该如何选择
一般采用id和时间做分片字段,也可以集合业务,,对执行中的sql语句进行分析,选出最被频繁使用和重要的字段为分片字段

跨分片技术问题
跨分片的排序分页
当排序字段就是分片字段的时候,我们通过分片规则可以比较容易定位到指定的分片,
当排序字段非分片字段的时候,我们需要在不同的分片节点中将数据进行排序并返回,并将不同分片返回的结果集进行汇总和再次排序

跨分片join
(1)全局表
把一些类似数据字典又可能会产生join查询的表信息放到各分片中,从而避免跨分片的join
(2)ER分片
在关系型数据库中,表之间往往存在一些关联的关系。如果我们可以先确定好关联关系,并将那些存在关联关系的表记录存放在同一个分片上,那么就能很好的避免跨分片join问题。在一对多关系的情况下,我们通常会选择按照数据较多的那一方进行拆分

(3)字段冗余

一种典型的反范式设计,利用空间换时间,为了性能而避免join查询。例如,订单表在保存userId的时候,也将userName也冗余的保存一份,这样查询订单详情顺表就可以查到用户名userName,就不用查询买家user表了。但这种方法适用场景也有限,比较适用依赖字段比较少的情况,而冗余字段的一致性也较难保证。

(4)数据组装

在系统service业务层面,分两次查询,第一次查询的结果集找出关联的数据id,然后根据id发起器二次请求得到关联数据,最后将获得的结果进行字段组装。这是比较常用的方法。

跨节点分页、排序、函数问题

跨节点多库进行查询时,会出现limit分页、order by 排序等问题。分页需要按照指定字段进行排序,当排序字段就是分页字段时,通过分片规则就比较容易定位到指定的分片;当排序字段非分片字段时,就变得比较复杂.需要先在不同的分片节点中将数据进行排序并返回,然后将不同分片返回的结果集进行汇总和再次排序

在使用Max、Min、Sum、Count之类的函数进行计算的时候,也需要先在每个分片上执行相应的函数,然后将各个分片的结果集进行汇总再次计算

跨分片事务问题

跨分片事务也分布式事务,想要了解分布式事务,就需要了解“XA接口”和“两阶段提交”。值得提到的是,MySQL5.5x和5.6x中的xa支持是存在问题的,会导致主从数据不一致。直到5.7x版本中才得到修复。Java应用程序可以采用Atomikos框架来实现XA事务(J2EE中JTA)。感兴趣的读者可以自行参考《分布式事务一致性解决方案》,链接地址:

http://www.infoq.com/cn/articles/solution-of-distributed-system-transaction-consistency

当更新内容同时存在于不同库找那个,不可避免会带来跨库事务问题。跨分片事务也是分布式事务,没有简单的方案,一般可使用“XA协议”和“两阶段提交”处理。 分布式事务能最大限度保证了数据库操作的原子性。但在提交事务时需要协调多个节点,推后了提交事务的时间点,延长了事务的执行时间,导致事务在访问共享资源时发生冲突或死锁的概率增高。随着数据库节点的增多,这种趋势会越来越严重,从而成为系统在数据库层面上水平扩展的枷锁。

最终一致性

对于那些性能要求很高,但对一致性要求不高的系统,往往不苛求系统的实时一致性,只要在允许的时间段内达到最终一致性即可,可采用事务补偿的方式。与事务在执行中发生错误立刻回滚的方式不同,事务补偿是一种事后检查补救的措施,一些常见的实现方法有:对数据进行对账检查,基于日志进行对比,定期同标准数据来源进行同步等。

数据迁移、扩容问题

当业务高速发展、面临性能和存储瓶颈时,才会考虑分片设计,此时就不可避免的需要考虑历史数据的迁移问题。一般做法是先读出历史数据,然后按照指定的分片规则再将数据写入到各分片节点中。此外还需要根据当前的数据量个QPS,以及业务发展速度,进行容量规划,推算出大概需要多少分片(一般建议单个分片的单表数据量不超过1000W)

什么时候考虑分库分表
能不分就不分

并不是所有表都需要切分,主要还是看数据的增长速度。切分后在某种程度上提升了业务的复杂程度。不到万不得已不要轻易使用分库分表这个“大招”,避免“过度设计”和“过早优化”。分库分表之前,先尽力做力所能及的优化:升级硬件、升级网络、读写分离、索引优化等。当数据量达到单表瓶颈后,在考虑分库分表。

数据量过大,正常运维影响业务访问

这里的运维是指:

对数据库备份,如果单表太大,备份时需要大量的磁盘IO和网络IO
对一个很大的表做DDL,MYSQL会锁住整个表,这个时间会很长,这段时间业务不能访问此表,影响很大。
大表经常访问和更新,就更有可能出现锁等待。
随着业务发展,需要对某些字段垂直拆分

这里就不举例了。在实际业务中都可能会碰到,有些不经常访问或者更新频率低的字段应该从大表中分离出去。

数据量快速增长

随着业务的快速发展,单表中的数据量会持续增长,当性能接近瓶颈时,就需要考虑水平切分,做分库分表了。

这篇关于分库分表问题汇总---更新中的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1105724

相关文章

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给

一文详解SQL Server如何跟踪自动统计信息更新

《一文详解SQLServer如何跟踪自动统计信息更新》SQLServer数据库中,我们都清楚统计信息对于优化器来说非常重要,所以本文就来和大家简单聊一聊SQLServer如何跟踪自动统计信息更新吧... SQL Server数据库中,我们都清楚统计信息对于优化器来说非常重要。一般情况下,我们会开启"自动更新