六度分离——最短路

2024-08-25 08:38
文章标签 分离 短路 六度

本文主要是介绍六度分离——最短路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

六度分离
Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u
Submit  Status

Description

1967年,美国著名的社会学家斯坦利・米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人,即只用6个人就可以将他们联系在一起,因此他的理论也被称为“六度分离”理论(six degrees of separation)。虽然米尔格兰姆的理论屡屡应验,一直也有很多社会学家对其兴趣浓厚,但是在30多年的时间里,它从来就没有得到过严谨的证明,只是一种带有传奇色彩的假说而已。 

Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。

Input

本题目包含多组测试,请处理到文件结束。 
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。 
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。 
除了这M组关系,其他任意两人之间均不相识。 

Output

对于每组测试,如果数据符合“六度分离”理论就在一行里输出"Yes",否则输出"No"。

Sample Input

     
8 7 0 1 1 2 2 3 3 4 4 5 5 6 6 7 8 8 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0

Sample Output

     
Yes Yes
只要计算任意两个人之间的距离小于8就行,因为人数最多为100,所以用弗洛伊德就不会超时!!这个最容易理解有最容易书写的算法,时间复杂度却是最高的,主要用于求任意两点间的最短距离。
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#define MAX 99999using namespace std;int mapp[101][101];int main()
{int n,m,a,b,d,p;int i,j,k;while(scanf("%d%d",&n,&m)!=EOF){for(i = 0;i <= n;i++){for(j = 0;j <= n;j++){mapp[i][j] = MAX;}}for(i = 0;i < m;i++){scanf("%d%d",&a,&b);mapp[a][b] = 1;mapp[b][a] = 1;}for(k = 0;k < n;k++){for(i = 0;i < n;i++){for(j = 0;j < n;j++){if(mapp[i][j] > mapp[i][k] + mapp[k][j]){mapp[i][j] = mapp[i][k] + mapp[k][j];}}}}int bj = 1;for(i = 0;i < n;i++){for(j = 0;j < n;j++){if(mapp[i][j] > 7){bj = 0;}}}if(bj == 1)printf("Yes\n");elseprintf("No\n");}return 0;
}


这篇关于六度分离——最短路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1105067

相关文章

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

springboot security之前后端分离配置方式

《springbootsecurity之前后端分离配置方式》:本文主要介绍springbootsecurity之前后端分离配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的... 目录前言自定义配置认证失败自定义处理登录相关接口匿名访问前置文章总结前言spring boot secu

springboot将lib和jar分离的操作方法

《springboot将lib和jar分离的操作方法》本文介绍了如何通过优化pom.xml配置来减小SpringBoot项目的jar包大小,主要通过使用spring-boot-maven-plugin... 遇到一个问题,就是每次maven package或者maven install后target中的ja

配置springboot项目动静分离打包分离lib方式

《配置springboot项目动静分离打包分离lib方式》本文介绍了如何将SpringBoot工程中的静态资源和配置文件分离出来,以减少jar包大小,方便修改配置文件,通过在jar包同级目录创建co... 目录前言1、分离配置文件原理2、pom文件配置3、使用package命令打包4、总结前言默认情况下,

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1502 MPI Maelstrom(单源最短路dijkstra)

题目真是长得头疼,好多生词,给跪。 没啥好说的,英语大水逼。 借助字典尝试翻译了一下,水逼直译求不喷 Description: BIT他们的超级计算机最近交货了。(定语秀了一堆词汇那就省略吧再见) Valentine McKee的研究顾问Jack Swigert,要她来测试一下这个系统。 Valentine告诉Swigert:“因为阿波罗是一个分布式共享内存的机器,所以它的内存访问

poj 3159 (spfa差分约束最短路) poj 1201

poj 3159: 题意: 每次给出b比a多不多于c个糖果,求n最多比1多多少个糖果。 解析: 差分约束。 这个博客讲差分约束讲的比较好: http://www.cnblogs.com/void/archive/2011/08/26/2153928.html 套个spfa。 代码: #include <iostream>#include <cstdio>#i

hdu 3790 (单源最短路dijkstra)

题意: 每条边都有长度d 和花费p,给你起点s 终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。 解析: 考察对dijkstra的理解。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstrin