汇编语言学习第三章-寄存器(内存访问)

2024-08-25 05:18

本文主要是介绍汇编语言学习第三章-寄存器(内存访问),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  本博文系列参考自<<汇编语言>>第三版,作者:王爽


本章将紧接着上一章从内存访问的角度讲解寄存器。


3.1 内存中字的存储

       一个字的大小为两个字节,8086CPU一个寄存器的大小为两个字节,所以使用8086CPU的寄存器存储一个字单元的时候,高字节寄存器存储字的高位字节,低字节寄存器存储字的低位字节。类似的,我们在用内存存储一个字的时候,高内存单元存储字的高字节,低内存单元存储字的低字节。比如20000(4E20H)在进行内存存储的时候,我们此时有0,1两个地址的内存单元,那么字的高字节4EH存储在内存地址为1的内存单元,字的低字节单元20H存储在内存地址为0的低内存单元。如下图所示:


字单元概念,即连续存储两个字节的内存单元。高内存单元存储字的高字节数据,低内存单元存储字的低字节数据。以后将起始地址为N的字节单元称为N地址字单元。


3.2 DS和[address],字的传送

CPU要读取一个内存单元的地址,必须得到该内存单元的段地址:偏移地址 才能得到实际的内存地址。我们如果我们要将读取内存地址为10000H的数据到AL,那么有如下的代码段:

      尽管我们之前可能没学过如果进行内存访问,我们不能看出要访问10000H内存单元即需要访问 1000:0其中1000H为段地址,0H为偏移地址。mov指令我们是学过的,前两句bx,1000H和mov ds,bx我们可以猜测其意思是将1000H存入寄存器ds中,那么为何不能直接通过mov ds,1000H直接赋值呢,这里有个问题是因为DS为段寄存器,8086CPU所以不能直接给段寄存器复制,必须通过普通寄存器过渡存储。那么 mov al,[0]就是我们访问内存10000H数据的,那么这里[0]我们推测是偏移地址,那么段地址来自于哪里呢,显然8086CPU对于段地址默认取自DS寄存器。所以这样不仅有了段地址和偏移地址,我们就可以轻松取得内存10000h的数据了,这里内存地址表示方式为[......],表示取得方框内为偏移地址的内存中的数据。

关于寄存器和内存之间传值,因为8086CPU在内存中有16根数据线,故一次性可以传送一个字的数据。


3.4 mov、add、sub指令,数据段

关于mov传值的形式:

mov 寄存器,数据        如:mov ax,8

mov 寄存器,寄存器    如: mov ax,bx

mov 寄存器,内存单元   如:mov ax,[0]

mov 内存单元,寄存器   如:mov [0],ax

mov 段寄存器,寄存器   如:mov DS,AX


mov 寄存器,段寄存     如:mov AX,DS

mov 内存单元,段寄存器 如:mov [0],DS

mov 段寄存器,内存单元 如:mov DS,[0]


add与sub指令的形式与mov类似,如下:




在8086CPU中我们可以把一段连续的内存地址作为数据段使用,该数据段用于存储数据。比如将10000H-10006定义为数据段,我们要取该段数据段的时候将段寄存器DS存入1000H,即可访问该段内存的地址,比如我们要将三个内存空间数据叠加,比如三个内存空间为10002H,10003H,10005H,代码如下:

mov ax,1000H

mov  ds,ax

mov al, 0;

add al, [2];

add al, [3];

add al. [5];



3.5 栈结构及CPU提供的栈机制

栈为一种线性结构,这里我们可以理解为栈为一种先进后出的存储结构或者数据结构。举个例子,比如我们有三本书book1,book2和book3 依次入栈。其结构及入栈出栈流程如下:

栈空:    |              |栈顶

           |              |

   |              | 栈低  

入栈:          

放入book1:    |                 |栈顶

             |                 |

     |    book1    | 栈低


放入book2:    |                 |栈顶

              |    book2    |

     |    book1   | 栈低


放入book3:    |    book3   |栈顶

              |    book2   |

     |    book1   | 栈低

出栈:

取出book3:    |                 |栈顶

              |    book2    |

     |    book1    | 栈低


放入book2:    |                 |栈顶

              |                |

     |    book1   | 栈低


放入book1:    |                |栈顶

              |                |

     |                | 栈低

在8086CPU也提供了相关指令以栈的方式访问内存,在基于8086CPU编程的时候。可以将一段内存当做栈使用,8086CPU指令系统提供了PUSH和POP两个指令进行栈操作,PUSH为入栈操作,POP为出栈操作,入栈时将数据压栈,出栈的时候取出栈顶指向的数据。8086CPU的PUSH和POP操作都是以字为单位进行的。比如PUSH ax为将ax的数据压入栈空间,POP ax为将栈顶的数据弹出存入ax中。

下面将10000H-1000FH这段内存当成栈空间使用,其相关出栈入栈的流程如下图所示:


图中对栈的整个操作流程很清楚了,那么问题来了,CPU如何知道这段内存按照栈的方式进行存储,另外我们在压栈和出栈的过程中都是压入栈顶和弹出栈顶元素,那么这个栈顶位置保存在何处呢。其实CPU已经为我们考虑好了,在8086CPU中有两个重要的寄存器,SS和SP,SS即Stack Segment,SP即Stack Point,代表着栈的段地址和栈顶地址。通过这两个地址CPU便可以识别栈空间和栈顶位置。


现在从新描述PUSH和POP指令的运行过程:

例如PUSH AX,由两步完成

(1) SP=SP-2;SS:SP指向当前栈顶前面的单元,以当前栈顶前面的单元为新的栈顶。

(2) 将AX送入SS:SP指向的内存单元处,SS:SP此时指向新的栈顶。

例如POP AX,由两步完成

(1) 将SS:SP指向的内存单元处的数据送入AX中。

(2) SP=SP+2,SS:SP指向当前栈顶的下面的单元,以当前栈顶下面的单元为新的栈顶。


3.6 栈顶越界的问题

从上面的描述已经介绍了SS和SP指向栈空间栈顶的位置,但是栈空间是有大小的,那么如果一直将数据压栈直到超过栈的空间那就会造成栈顶越界的问题,实际上CPU是不会检查栈顶是否越界的问题,因为CPU并不知道当前栈空间的大小,所有在编程的时候需要程序员自己注意和控制栈顶越界的问题。


3.7 PUSH和POP的其他使用方式和栈段

PUSH和POP是对栈存储空间操作的特定指令,然而PUSH和POP不仅可以操作寄存器还可以对段寄存器和内存进行操作

比如 PUSH DS;

POP   DS;

PUSH [0];

POP  [0];

关于段,前面我们已经接触过好几个段寄存器,CS,DS,SS其中CS为code segment(代码段),DS为data segment(数据段),ss为stack segment(栈段),这三个段寄存器分别存储不同的数据。在需要的时候可以通过段地址+偏移地址取得各个段中的数据。


OK,以上内容即为寄存器的进一步讲解。下一篇博客将开始介绍第一个汇编程序。

 


          




这篇关于汇编语言学习第三章-寄存器(内存访问)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104641

相关文章

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

本地搭建DeepSeek-R1、WebUI的完整过程及访问

《本地搭建DeepSeek-R1、WebUI的完整过程及访问》:本文主要介绍本地搭建DeepSeek-R1、WebUI的完整过程及访问的相关资料,DeepSeek-R1是一个开源的人工智能平台,主... 目录背景       搭建准备基础概念搭建过程访问对话测试总结背景       最近几年,人工智能技术

Ollama整合open-webui的步骤及访问

《Ollama整合open-webui的步骤及访问》:本文主要介绍如何通过源码方式安装OpenWebUI,并详细说明了安装步骤、环境要求以及第一次使用时的账号注册和模型选择过程,需要的朋友可以参考... 目录安装环境要求步骤访问选择PjrIUE模型开始对话总结 安装官方安装地址:https://docs.

Linux内存泄露的原因排查和解决方案(内存管理方法)

《Linux内存泄露的原因排查和解决方案(内存管理方法)》文章主要介绍了运维团队在Linux处理LB服务内存暴涨、内存报警问题的过程,从发现问题、排查原因到制定解决方案,并从中学习了Linux内存管理... 目录一、问题二、排查过程三、解决方案四、内存管理方法1)linux内存寻址2)Linux分页机制3)

解读静态资源访问static-locations和static-path-pattern

《解读静态资源访问static-locations和static-path-pattern》本文主要介绍了SpringBoot中静态资源的配置和访问方式,包括静态资源的默认前缀、默认地址、目录结构、访... 目录静态资源访问static-locations和static-path-pattern静态资源配置

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe

Java访问修饰符public、private、protected及默认访问权限详解

《Java访问修饰符public、private、protected及默认访问权限详解》:本文主要介绍Java访问修饰符public、private、protected及默认访问权限的相关资料,每... 目录前言1. public 访问修饰符特点:示例:适用场景:2. private 访问修饰符特点:示例: