本文主要是介绍C++调用Python和numpy第三方库计算MFCC音频特征实现封装发布,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- 项目简介
- 环境准备
- 执行步骤
- 1.新建python虚拟环境
- 2.虚拟环境运行下python代码
- 3.迁移虚拟环境
- 4.编写Cmakelists.txt
- 5.编写C++代码
- 6.编译项目
- 7.测试
项目简介
深度学习程序的边缘部署以性能绝佳的C++为主(⊙﹏⊙),但遇到项目开发周期短,则以功能优先,一些复杂的算法和处理用C++写怕不是得写到天荒地老,于是C++调用python以及第三方库的C端接口这样的方案就应运而生,牺牲一小部分性能,换来功能的完成,连准确性也顺便验证了(注意如果开发人员水平不够(ㄒoㄒ),用C++造轮子的性能还不如python)本项目首先开发了一个python的类用于预处理wav音频文件来提取MFCC特征,得益于python_speech_features库其实几行代码就能解决,但为了后续的学习借鉴,本次开发较完善点,开发的多个接口对多种数据传递的情况做演示,然后用C++调用这些python接口并取回数据,经测试,每次调用接口会比纯python执行慢不到1毫秒,最终打包后的项目放到无任何开发环境的虚拟机做测试,这其中的波折和踩坑真的只有做过的才懂┭┮﹏┭┮
梅尔频率倒谱系数(MFCC)通过对音频信号的处理和分析,提取出反映语音特征的信息,广泛应用于语音识别、语音合成、说话人识别等领域。可以简单的理解为将一个音频文件转为了矩阵,该矩阵保存了音频特征。
# 程序/数据集下载
点击进入下载地址
本文章只发布于博客园和爆米算法,被抄袭后可能排版错乱或下载失效,作者:爆米LiuChen
环境准备
python3.8(虚拟环境或主环境均可)、VS2019(已支持cmake)、什么都没装的win虚拟机(用于测试)整个项目的文件结构如下
执行步骤
1.新建python虚拟环境
anaconda的命令是【conda create -n 环境名 python=3.8】,然后pip安装下numpy、scipy,python_speech这几个包2.虚拟环境运行下python代码
AudioPreprocess.py代码如下,主要实现了AudioPreprocess这个类,作用是将wav文件先采样成numpy矩阵,然后提取MFCC特征from python_speech_features import mfcc
import scipy.io.wavfile
from numpy.typing import NDArray
from typing import Tuple
import numpy as npdef yell():print('''Congratulations,you import 【AudioPreprocess】 successfully!!!''')class AudioPreprocess():def __init__(self,numcep:int=13,keepSecs:int=8):'''预处理类:param numcep: MFCC特征数(通道数):param keepSecs: 一个wav文件读取后保留的秒数,不够则补0'''self.numcep = numcepself.keepSecs = keepSecsdef readWave(self,wavePath:str)->Tuple[int,NDArray[np.int16]]:'''读取一个wave文件:param wavePath: wav文件路径:return: 采样率,采样'''samplerate, samples = scipy.io.wavfile.read(wavePath)return samplerate, samplesdef samples2MFCC(self,samplerate:int, samples:NDArray[np.int16])->NDArray[np.float32]:'''一个wav的采样转MFCC特征:param samplerate: 采样率:param samples: 采样:return: MFCC特征 size=(channel,feature)'''samples = samples if len(samples.shape) <= 1 else samples[:, 0]samples = samples[:int(self.keepSecs*samplerate)]samples = np.pad(samples, pad_width=(0, int(samplerate * self.keepSecs) - samples.shape[0]), mode='constant',constant_values=(0, 0))mfccFeature = mfcc(samples, samplerate=samplerate,numcep=self.numcep)mfccFeature = np.transpose(mfccFeature,axes=(1,0))return mfccFeaturedef wave2MFCC(self,wavePath:str)->NDArray[np.float64]:'''wav路径转MFCC:param wavePath: wav文件路径:return: MFCC特征 size=(channel,feature)'''samplerate, samples = self.readWave(wavePath)mfccFeature = self.samples2MFCC(samplerate, samples)return mfccFeatureif __name__ == "__main__":import timepath = "test.wav"audioPreprocess = AudioPreprocess()samplerate, samples = audioPreprocess.readWave(path)t1 = time.time()for i in range(100):mfccFeature = audioPreprocess.wave2MFCC(path)t2 = time.time()print((t2-t1)*1000)
3.迁移虚拟环境
可以将整个虚拟环境都转移到项目中,这样最稳,但文件也最多,我是主要复制了下面几个文件和文件夹,并删除了Lib/site-packages里一些用不到的库,结果还是得要250多M,numpy和scipy这俩库太大了...其实可以尝试一个个的删除,只要留下的文件能支撑你的项目就行,但我这边就懒得这么做了4.编写Cmakelists.txt
因为需要调用python解释器,并且也用到了numpy的C接口,所以要额外编写下这俩的配置,需要的文件都在我们的虚拟环境中cmake_minimum_required (VERSION 3.8)
project ("AudioPrepocess")
SET(CMAKE_BUILD_TYPE "Release")#Debug或Release模式
set(CMAKE_CXX_STANDARD 11)
add_compile_options("$<$<C_COMPILER_ID:MSVC>:/utf-8>")
add_compile_options("$<$<CXX_COMPILER_ID:MSVC>:/utf-8>")#项目文件路径配置
set(CMAKE_BINARY_DIR "${CMAKE_SOURCE_DIR}/build")#项目源码构建路径
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY "${CMAKE_SOURCE_DIR}/bin")#存放可执行软件的目录;
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY "${CMAKE_SOURCE_DIR}/lib")#默认存放项目生成的静态库的文件夹位置;
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY "${CMAKE_SOURCE_DIR}/lib")#默认存放项目生成的动态库的文件夹位置;
include_directories(include)#头文件目录
aux_source_directory(source SRC_FILES)#源文件目录的所有文件#调用python的设置
set(PYTHON_DIR "${CMAKE_SOURCE_DIR}/python38/env")
include_directories("${PYTHON_DIR}/include")#头文件目录
link_libraries("${PYTHON_DIR}/libs/python38.lib")
#调用numpy的设置
include_directories("${CMAKE_SOURCE_DIR}/python38/env/Lib/site-packages/numpy/core/include/numpy")#头文件目录
link_libraries("${CMAKE_SOURCE_DIR}/python38/env/Lib/site-packages/numpy/core/lib/npymath.lib")
#移动一些python的依赖
file(COPY "${CMAKE_SOURCE_DIR}/python38" DESTINATION "${CMAKE_RUNTIME_OUTPUT_DIRECTORY}")
file(RENAME "${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/python38/env/python38.dll" "${CMAKE_SOURCE_DIR}/bin/python38.dll")add_executable(${PROJECT_NAME} main.cpp ${SRC_FILES} "source/AudioPreprocess.cpp")#构建可执行文件
5.编写C++代码
include/AudioPreprocess.h如下,声明一个对应python的AudioPreprocess类,成员函数也一致(可以不用这么对应,单纯写个函数去调执行py脚本里的AudioPreprocess类接口就行)反正最后是调用python代码,要不要对应不重要,但这个博客主要是演示的全面一点,注释也写得全一点#include <chrono>
#include <vector>
#include "Python.h"
#include "arrayobject.h"long long getCurrentTimeMS();//获得当前时间戳 单位毫秒int* initNumpy();//初始化numpy会有返回值 不能直接放在类的构造函数中,所以拿个形式函数包裹下//包裹readWave的返回值
struct ResReadWave {int sampleRate;PyArrayObject* samples;
};//调用python进行音频预处理类 可选择是否标准化数据 但需要传入标准化文件路径
class AudioPreprocess
{
public:/// @brief 初始化python 初始化模块和导入的python类/// @param scalerPath 标准化文件路径/// @param numcep MFCC特征数(通道数)/// @param keepSecs 一个wav文件读取后保留的秒数,不够则补0AudioPreprocess(int numcep=13, int keepSecs=8);/// @brief 读取wav文件,返回采样率和采样/// @param wavePath ResReadWave readWave(char* wavePath);/// @brief 采样转MFCC特征 返回MFCC特征/// @param samplerates /// @param samples /// @return MFCC特征 二维数组PyArrayObject *samples2MFCC(int samplerates, PyArrayObject* samples);/// @brief 读取wav文件,返回MFCC特征/// @param wavePath /// @return MFCC特征 二维数组PyArrayObject* wave2MFCC(char* wavePath);~AudioPreprocess();private:PyObject* pyModule;PyObject* pyFunc;PyObject* pyArgs;PyObject* pyClass;PyObject* pyClassObj;//python预处理类中对应的函数、参数、返回值PyObject* pyFuncReadWave;PyObject* pyArgsReadWave;PyObject* pyResReadWave;PyObject* pyFuncSamples2MFCC;PyObject* pyArgsSamples2MFCC;PyObject* pyResSamples2MFCC;PyObject* pyFuncWave2MFCC;PyObject* pyArgsWave2MFCC;PyObject* pyResWave2MFCC;int numcep;int keepSecs;
};
source/AudioPreprocess.cpp如下,实现C++和python互传一些基本类型以及numpy这种稍微复杂点的矩阵,注意python初始化的执行顺序,还有最好手动释放那些python对象,还有注意numpy的数据精度类型,不对齐是不会报错的 可以看出C++其实实例化了一个python解释器,然后在解释器里执行python代码,等于在python外套了一层,因此不管怎样都不可能比python还快,这种方式适合需要实现复杂算法且开发时间短的场景,毕竟谁愿意去看MFCC的公式呢...
#include "AudioPreprocess.h"int* initNumpy() {import_array();
}long long getCurrentTimeMS() {auto now = std::chrono::system_clock::now(); // 获取当前时间点auto now_ms = std::chrono::time_point_cast<std::chrono::milliseconds>(now); // 转换为毫秒auto epoch = now_ms.time_since_epoch(); // 计算自纪元以来的毫秒数return epoch.count(); // 返回毫秒数
}AudioPreprocess::AudioPreprocess(int numcep, int keepSecs):numcep(numcep), keepSecs(keepSecs){//初始化python解释器Py_SetPythonHome(L"python38/env");Py_Initialize();initNumpy();//初始化numpy,必须紧跟在python解释器初始化后面PyRun_SimpleString("import sys;sys.path.append('./python38')");this->pyModule = PyImport_ImportModule("AudioPreprocess");this->pyFunc = PyObject_GetAttrString(this->pyModule, "yell");//yell这个函数的作用只是确认导入成功 顺便示范下怎么调用python函数PyEval_CallObject(this->pyFunc, nullptr);//实例化python的音频处理类this->pyClass = PyObject_GetAttrString(this->pyModule, "AudioPreprocess");//获取AudioPreprocess这个类this->pyArgs = Py_BuildValue("(i,i)", numcep, keepSecs);this->pyClassObj = PyEval_CallObject(this->pyClass,this->pyArgs);//初始化指针对应python的音频处理类成员函数、参数、返回值this->pyFuncReadWave = PyObject_GetAttrString(this->pyClassObj, "readWave");this->pyArgsReadWave = PyTuple_New(1);this->pyResReadWave = PyTuple_New(2);this->pyFuncSamples2MFCC = PyObject_GetAttrString(this->pyClassObj, "samples2MFCC");this->pyArgsSamples2MFCC = PyTuple_New(2);this->pyResSamples2MFCC = PyTuple_New(1);this->pyFuncWave2MFCC = PyObject_GetAttrString(this->pyClassObj, "wave2MFCC");this->pyArgsWave2MFCC = PyTuple_New(1);this->pyResWave2MFCC = PyTuple_New(1);
}ResReadWave AudioPreprocess::readWave(char* wavePath) {//传入路径PyTuple_SetItem(this->pyArgsReadWave,0,Py_BuildValue("s",wavePath));this->pyResReadWave = PyEval_CallObject(this->pyFuncReadWave, this->pyArgsReadWave);//返回值1 采样率int sampleRate;PyArg_Parse(PyTuple_GetItem(this->pyResReadWave, 0),"i", &sampleRate);//返回值2 采样 numpy int16一维数组PyArrayObject* samples = (PyArrayObject*)PyArray_FROM_OTF(PyTuple_GetItem(this->pyResReadWave, 1), NPY_INT16, NPY_IN_ARRAY);ResReadWave result = {sampleRate,samples};//打印下值,验证准确性 python输出的值为58npy_intp indices[1] = {0}; // [0]的位置int16_t value = *(int16_t*)PyArray_GetPtr(result.samples, indices);printf("python输出数组[0,0] :58\nC++&python输出数组[0,0]:%d\n\n",value);return result;
}PyArrayObject* AudioPreprocess::samples2MFCC(int sampleRate, PyArrayObject* samples) {//传入 采样率 采样二维数组PyTuple_SetItem(this->pyArgsSamples2MFCC, 0, Py_BuildValue("i", sampleRate));PyTuple_SetItem(this->pyArgsSamples2MFCC, 1, (PyObject*)samples);this->pyResSamples2MFCC = PyEval_CallObject(this->pyFuncSamples2MFCC, this->pyArgsSamples2MFCC);//返回值 采样二维数组PyArrayObject* mfccFeature = (PyArrayObject*)PyArray_FROM_OTF(this->pyResSamples2MFCC, NPY_FLOAT64, NPY_IN_ARRAY);//打印下值,验证准确性 python输出的值为11.31785676885986npy_intp indices[2] = {0,0}; // [0,0]的位置double_t value = *(double_t*)PyArray_GetPtr(mfccFeature, indices);printf("python输出数组[0,0] :11.31785676885986\nC++&python输出数组[0,0]:%.14f\n",value);return mfccFeature;
}PyArrayObject* AudioPreprocess::wave2MFCC(char* wavePath) {//传入路径PyTuple_SetItem(this->pyArgsWave2MFCC, 0, Py_BuildValue("s", wavePath));this->pyResWave2MFCC = PyEval_CallObject(this->pyFuncWave2MFCC, this->pyArgsWave2MFCC);//返回值 采样二维数组PyArrayObject* mfccFeature = (PyArrayObject*)PyArray_FROM_OTF(this->pyResWave2MFCC, NPY_FLOAT64, NPY_IN_ARRAY);return mfccFeature;
}AudioPreprocess::~AudioPreprocess() {Py_CLEAR(pyModule);Py_CLEAR(pyFunc);Py_CLEAR(pyArgs);Py_CLEAR(pyClass);Py_CLEAR(pyClassObj);Py_CLEAR(pyFuncReadWave);Py_CLEAR(pyArgsReadWave);Py_CLEAR(pyResReadWave);Py_CLEAR(pyFuncSamples2MFCC);Py_CLEAR(pyArgsSamples2MFCC);Py_CLEAR(pyResSamples2MFCC);Py_CLEAR(pyFuncWave2MFCC);Py_CLEAR(pyArgsWave2MFCC);Py_CLEAR(pyResWave2MFCC);Py_Finalize();
}
main.cpp如下,验证下上文实现的方法,并于python做下对比验证,精度不一致问题是深度学习大忌,还有看看性能损失有多少,顺便做一下多线程实验,python内部的GIL锁会导致C++多线程崩溃,必须手动给python加锁
#include <iostream>
#include "AudioPreprocess.h"
#include <thread>
#include <mutex>AudioPreprocess AP(13, 8);//初始化音频处理类 理论上只需要简单实现wave2MFCC函数,但我对应python的类都实现了,就当练习void wave2MFCC_thread(char* wavePath) {PyGILState_STATE state = PyGILState_Ensure();AP.wave2MFCC("./python38/test.wav");PyGILState_Release(state);}void main() {ResReadWave resReadWave;//存储采样率和采用PyArrayObject* mfccFeature;//存储MFCC特征//resReadWave.samples只能在类内访问 不明原因 可能是因为python解释器在那个类中初始化的,可以想办法在类内转成C++ vector数组再访问resReadWave = AP.readWave("./python38/test.wav");mfccFeature = AP.samples2MFCC(resReadWave.sampleRate, resReadWave.samples);mfccFeature = AP.wave2MFCC("./python38/test.wav");//运行100次,计算时间 ,对比纯python的时间long long t1 = getCurrentTimeMS();for (int i = 1; i <= 100; ++i) {mfccFeature = AP.wave2MFCC("./python38/test.wav");}long long t2 = getCurrentTimeMS();printf("\npython运行100次函数时间 :930 ms\nC++&python运行100次函数时间:%d ms\n",t2-t1);//多线程实验 如果没处理好 C++多线程会使python解释器崩溃printf("\n多线程实验");printf("\n多线程初始化:%d", PyEval_ThreadsInitialized());printf("\n全局解释器锁GIL:%d\n", PyGILState_Check());//PyEval_InitThreads();//开启多线程支持 3.8这个版本已经不需要手动调用这行代码来开启多线程支持Py_BEGIN_ALLOW_THREADS;//暂时释放全局解释器锁GILchar* wavePath = "./python38/test.wav";std::thread t1(wave2MFCC_thread, wavePath);std::thread t2(wave2MFCC_thread, wavePath);t1.join();t2.join();Py_END_ALLOW_THREADS;//重新获取全局解释器锁//Python的对象最好都自己手动销毁Py_CLEAR(resReadWave.samples);Py_CLEAR(mfccFeature);system("pause");
}
6.编译项目
如果有安装上文的文件结构放置,那cmake会将可执行文件和虚拟环境以及测试文件放入bin目录下,并将虚拟环境的python38.dll移动到exe文件同目录,但附件中不会有bin目录,bin是编译后生成的很占空间,如下图7.测试
将bin目录扔到虚拟机,模拟一个没有开发环境的客户端,运行exe文件,可以看到运行结果验证和对比,执行100次函数延迟了200ms,算得出做1次调用会比python慢2ms,不过这个可以接受这篇关于C++调用Python和numpy第三方库计算MFCC音频特征实现封装发布的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!