sdut2498--AOE网上的关键路径(spfa+最小字典序)

2024-08-25 01:18

本文主要是介绍sdut2498--AOE网上的关键路径(spfa+最小字典序),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AOE网上的关键路径

Time Limit: 1000MS Memory limit: 65536K

题目描述

    一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图。 
   
 AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG。与AOV不同,活动都表示在了边上,如下图所示:
                                     

    
如上所示,共有11项活动(11条边),9个事件(9个顶点)。整个工程只有一个开始点和一个完成点。即只有一个入度为零的点(源点)和只有一个出度为零的点(汇点)。
    
关键路径:是从开始点到完成点的最长路径的长度。路径的长度是边上活动耗费的时间。如上图所示,到 579是关键路径(关键路径不止一条,请输出字典序最小的),权值的和为18

输入

    这里有多组数据,保证不超过10组,保证只有一个源点和汇点。输入一个顶点数n(2<=n<=10000),边数m(1<=m <=50000),接下来m行,输入起点sv,终点ev,权值w1<=sv,ev<=n,sv != ev,1<=w <=20)。数据保证图连通。

输出

    关键路径的权值和,并且从源点输出关键路径上的路径(如果有多条,请输出字典序最小的)。

示例输入

9 11
1 2 6
1 3 4
1 4 5
2 5 1
3 5 1
4 6 2
5 7 9
5 8 7
6 8 4
8 9 4
7 9 2

示例输出

18
1 2
2 5
5 7
7 9

由题意可以知道这是要求从起点s到终点e的最长路径,因为有10000个点,有50000条边,用spfa进行最短路,但是有一个问题就是要求路径的字典序最小。

解决方式:

倒序建图,当松弛时(u,v),遇到相同的情况,尽量使u变的更小,那么最终得到就是最小的字典序。

对于求最长路径,将dis设为-INF,dis[s] = 0 

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std ;
#define INF 0x3f3f3f3f
struct node{int v , w ;int next ;
}p[60000];
queue <int> que ;
int head[11000] , cnt , dis[11000] , vis[11000] ;
int pre[11000] ;
int in[110000] , out[11000] ;
int pri[110000] , num ;
void add(int u,int v,int w)
{p[cnt].v = v ;p[cnt].w = w ;p[cnt].next = head[u] ;head[u] = cnt++ ;return ;
}
void spfa(int s,int e,int n)
{int i , j , u , v ;memset(dis,-INF,sizeof(dis)) ;memset(pre,INF,sizeof(pre)) ;memset(vis,0,sizeof(vis)) ;while( !que.empty() )que.pop();que.push(s) ;dis[s] = 0 ;vis[s] = 1 ;while( !que.empty() ){u = que.front() ;que.pop() ;vis[u] = 0 ;for( i = head[u] ; i != -1 ; i = p[i].next ){v = p[i].v ;if( dis[v] < dis[u] + p[i].w || ( dis[v] == dis[u] + p[i].w && u < pre[v] ) ){dis[v] = dis[u] + p[i].w ;pre[v] = u ;if( vis[v] == 0 ){vis[v] = 1 ;que.push( v ) ;}}}}printf("%d\n", dis[e] ) ;num = 0 ;for( i = e; i != INF ; i = pre[i] )pri[num++] = i ;for(i = 1 ; i < num ; i++){printf("%d %d\n", pri[i-1], pri[i] ) ;}return ;
}
int main()
{int n , m , i , j , u , v , w ;while( scanf("%d %d", &n, &m) != EOF ){cnt = 0 ;memset(head,-1,sizeof(head)) ;memset(in,0,sizeof(in)) ;memset(out,0,sizeof(out)) ;while( m-- ){scanf("%d %d %d", &u, &v, &w);add(v,u,w) ;in[u]++ ;out[v]++ ;}for(i = 1 ; i <= n ; i++){if( !in[i] )u = i ;if( !out[i] )v = i ;}spfa(u,v,n);}return 0;
}


这篇关于sdut2498--AOE网上的关键路径(spfa+最小字典序)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104147

相关文章

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

Python容器类型之列表/字典/元组/集合方式

《Python容器类型之列表/字典/元组/集合方式》:本文主要介绍Python容器类型之列表/字典/元组/集合方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 列表(List) - 有序可变序列1.1 基本特性1.2 核心操作1.3 应用场景2. 字典(D

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Python中Windows和macOS文件路径格式不一致的解决方法

《Python中Windows和macOS文件路径格式不一致的解决方法》在Python中,Windows和macOS的文件路径字符串格式不一致主要体现在路径分隔符上,这种差异可能导致跨平台代码在处理文... 目录方法 1:使用 os.path 模块方法 2:使用 pathlib 模块(推荐)方法 3:统一使

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

MySQL9.0默认路径安装下重置root密码

《MySQL9.0默认路径安装下重置root密码》本文主要介绍了MySQL9.0默认路径安装下重置root密码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录问题描述环境描述解决方法正常模式下修改密码报错原因问题描述mysqlChina编程采用默认安装路径,

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M