如何实现一棵红黑树

2024-08-25 00:04
文章标签 实现 红黑树 一棵

本文主要是介绍如何实现一棵红黑树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.什么是红黑树

2.红黑树的实现

2.1红黑树的插入

新插入的结点应该是什么颜色的呢?

插入情况的分析

​编辑插入代码如下所示

2.2红黑树的查找

2.2检测红黑树


1.什么是红黑树?

红黑树是一棵接近平衡的二叉搜索树。由于AVL树在频繁大量改变数据的情况下,需要进行很多的旋转,会降低效率,因此,需要新的方案解决AVL树的不足,于是,有大佬发明了红黑树;红黑树是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是red或black。 通过对各个结点着色方式的限制红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。着色方式限制如下:

  • 每个结点不是红色就是黑色,但根节点必须是黑色的。
  • 如果一个节点是红色的,则它的两个孩子结点是黑色的(没有连续的红色结点)。
  • 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点(每条路径都包含相同数量的黑色结点)。
  • 注意:红黑树中的路径不是走到叶子结点,而是走到空。

为什么满足上述条件就可以保证最长路径不超过最短路径的2倍呢?极端条件下,最短路径为全黑,最长路径必须是一黑一红交替连接;此时,最长路径正好等于最短路径的2倍。

对比AVL树:AVL树高度很接近log_N,红黑树高度很接近2log_N,所以红黑树的查询效率比AVL树略差,但是几乎可以忽略不计,因为log_N足够小,所以他们之间查找的效率微乎其微。

2.红黑树的实现

(本文旨在了解红黑树,重点实现红黑树的插入)

2.1红黑树的插入

新插入的结点应该是什么颜色的呢?

红黑树的插入过程中需要保持红黑树的性质,所以,插入之前,每条路径上的黑色结点的数量是相等的,如果新插入的结点是黑色的,必然会破坏每条路径上黑色结点的数量相等的条件,需要调整;

如果插入红色结点呢?如果插入结点的父亲是黑色的,则没有破坏红黑树的性质,如果插入结点的父亲是红色的,则破坏了不能出现连续的红色结点的性质,需要调整。

总结一下就是,如果插入的结点是黑色的, 那么每次都需要调整,如果插入的结点是红色的,只有父结点是红色的,才需要调整;所以我们选择新增结点的颜色是红色的。

插入情况的分析

因为我们插入的结点的颜色是红色的,也就是上图中的cur结点,因为,插入之前的树是满足红黑树的性质的,所以,如果出现矛盾的话,p的颜色一定是红色的, g的结点一定是黑色的;此时,只剩下u结点的情况是不确定的,所以我们只需要分析u节点的情况。

情况一:u节点存在且为红色。处理方式为变色,p和u变黑g变红,如果g是根,把g变黑即可,如果g不是根,把g当成c,继续往上处理。如下图所示:

情况二:u不存在/u存在且为黑。在该情况下,又可以细分出四种情况。

  • p为g的左孩子,c为p的左孩子,以p为旋转中心进行右单旋调整。如下图所示:

  • p为g的右孩子,c为p的右孩子,以p为旋转中心进行左单旋调整。如下图所示:

  • p为g的左孩子,c为p的右孩子,以p为旋转中心进行左单旋,再以g为旋转中心进行右单旋,最后将cur变黑,将g变红。如下图所示:

  • p为g的右孩子,c为p的左孩子,以p为旋转中心进行右单旋,再以g为旋转中心进行左单旋,最后将cur变黑,将g变红。如下图所示:

插入代码如下所示

旋转操作和AVL树是相同的,此处不做讲解,不会的读者推荐阅读AVL树中有详细讲解

    bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv); // 红色的if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色if (cur == parent->_left){//       g//    p    u// cRotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//       g//    p     u//      cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;} }else{Node* uncle = grandfather->_left;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色//      g//   u     p//            cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		g//   u     p//      cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}

2.2红黑树的查找

在红黑树查找一个值和在AVL树中查找一个值是相同的。代码如下所示:

    Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_kv.first < key){cur = cur->_right;}else if (cur->_kv.first > key){cur = cur->_left;}else{return cur;}}return NULL;}

2.2检测红黑树

如何检测我们实现的红黑树是否正确呢?我们只需要检测该树是否满足红黑树的性质,也就是一下三点:

  • 1.根是黑色的
  • 2.没有连续的红色结点
  • 3.每条路径上的黑色结点的数量相等

检测策略:先求出一条路径上黑色结点的数量作为标准值,然后依次求每一条路径上黑色结点的数量,与标准值比较。代码如下:

bool Check(Node* cur, int blackNum, int refBlackNum){if (cur == nullptr){if (refBlackNum != blackNum){cout << "黑色节点的数量不相等" << endl;return false;}//cout << blackNum << endl;return true;}if (cur->_col == RED && cur->_parent->_col == RED){cout << cur->_kv.first << "存在连续的红色节点" << endl;return false;}if (cur->_col == BLACK)++blackNum;return Check(cur->_left, blackNum, refBlackNum)&& Check(cur->_right, blackNum, refBlackNum);}bool IsBalance(){if (_root && _root->_col == RED)return false;int refBlackNum = 0;Node* cur = _root;while (cur){if(cur->_col == BLACK)refBlackNum++;cur = cur->_left;}return Check(_root, 0, refBlackNum);}

这篇关于如何实现一棵红黑树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103983

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2