如何实现一棵红黑树

2024-08-25 00:04
文章标签 实现 红黑树 一棵

本文主要是介绍如何实现一棵红黑树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.什么是红黑树

2.红黑树的实现

2.1红黑树的插入

新插入的结点应该是什么颜色的呢?

插入情况的分析

​编辑插入代码如下所示

2.2红黑树的查找

2.2检测红黑树


1.什么是红黑树?

红黑树是一棵接近平衡的二叉搜索树。由于AVL树在频繁大量改变数据的情况下,需要进行很多的旋转,会降低效率,因此,需要新的方案解决AVL树的不足,于是,有大佬发明了红黑树;红黑树是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是red或black。 通过对各个结点着色方式的限制红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。着色方式限制如下:

  • 每个结点不是红色就是黑色,但根节点必须是黑色的。
  • 如果一个节点是红色的,则它的两个孩子结点是黑色的(没有连续的红色结点)。
  • 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点(每条路径都包含相同数量的黑色结点)。
  • 注意:红黑树中的路径不是走到叶子结点,而是走到空。

为什么满足上述条件就可以保证最长路径不超过最短路径的2倍呢?极端条件下,最短路径为全黑,最长路径必须是一黑一红交替连接;此时,最长路径正好等于最短路径的2倍。

对比AVL树:AVL树高度很接近log_N,红黑树高度很接近2log_N,所以红黑树的查询效率比AVL树略差,但是几乎可以忽略不计,因为log_N足够小,所以他们之间查找的效率微乎其微。

2.红黑树的实现

(本文旨在了解红黑树,重点实现红黑树的插入)

2.1红黑树的插入

新插入的结点应该是什么颜色的呢?

红黑树的插入过程中需要保持红黑树的性质,所以,插入之前,每条路径上的黑色结点的数量是相等的,如果新插入的结点是黑色的,必然会破坏每条路径上黑色结点的数量相等的条件,需要调整;

如果插入红色结点呢?如果插入结点的父亲是黑色的,则没有破坏红黑树的性质,如果插入结点的父亲是红色的,则破坏了不能出现连续的红色结点的性质,需要调整。

总结一下就是,如果插入的结点是黑色的, 那么每次都需要调整,如果插入的结点是红色的,只有父结点是红色的,才需要调整;所以我们选择新增结点的颜色是红色的。

插入情况的分析

因为我们插入的结点的颜色是红色的,也就是上图中的cur结点,因为,插入之前的树是满足红黑树的性质的,所以,如果出现矛盾的话,p的颜色一定是红色的, g的结点一定是黑色的;此时,只剩下u结点的情况是不确定的,所以我们只需要分析u节点的情况。

情况一:u节点存在且为红色。处理方式为变色,p和u变黑g变红,如果g是根,把g变黑即可,如果g不是根,把g当成c,继续往上处理。如下图所示:

情况二:u不存在/u存在且为黑。在该情况下,又可以细分出四种情况。

  • p为g的左孩子,c为p的左孩子,以p为旋转中心进行右单旋调整。如下图所示:

  • p为g的右孩子,c为p的右孩子,以p为旋转中心进行左单旋调整。如下图所示:

  • p为g的左孩子,c为p的右孩子,以p为旋转中心进行左单旋,再以g为旋转中心进行右单旋,最后将cur变黑,将g变红。如下图所示:

  • p为g的右孩子,c为p的左孩子,以p为旋转中心进行右单旋,再以g为旋转中心进行左单旋,最后将cur变黑,将g变红。如下图所示:

插入代码如下所示

旋转操作和AVL树是相同的,此处不做讲解,不会的读者推荐阅读AVL树中有详细讲解

    bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv); // 红色的if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色if (cur == parent->_left){//       g//    p    u// cRotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//       g//    p     u//      cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;} }else{Node* uncle = grandfather->_left;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色//      g//   u     p//            cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		g//   u     p//      cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}

2.2红黑树的查找

在红黑树查找一个值和在AVL树中查找一个值是相同的。代码如下所示:

    Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_kv.first < key){cur = cur->_right;}else if (cur->_kv.first > key){cur = cur->_left;}else{return cur;}}return NULL;}

2.2检测红黑树

如何检测我们实现的红黑树是否正确呢?我们只需要检测该树是否满足红黑树的性质,也就是一下三点:

  • 1.根是黑色的
  • 2.没有连续的红色结点
  • 3.每条路径上的黑色结点的数量相等

检测策略:先求出一条路径上黑色结点的数量作为标准值,然后依次求每一条路径上黑色结点的数量,与标准值比较。代码如下:

bool Check(Node* cur, int blackNum, int refBlackNum){if (cur == nullptr){if (refBlackNum != blackNum){cout << "黑色节点的数量不相等" << endl;return false;}//cout << blackNum << endl;return true;}if (cur->_col == RED && cur->_parent->_col == RED){cout << cur->_kv.first << "存在连续的红色节点" << endl;return false;}if (cur->_col == BLACK)++blackNum;return Check(cur->_left, blackNum, refBlackNum)&& Check(cur->_right, blackNum, refBlackNum);}bool IsBalance(){if (_root && _root->_col == RED)return false;int refBlackNum = 0;Node* cur = _root;while (cur){if(cur->_col == BLACK)refBlackNum++;cur = cur->_left;}return Check(_root, 0, refBlackNum);}

这篇关于如何实现一棵红黑树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103983

相关文章

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络