如何实现一棵红黑树

2024-08-25 00:04
文章标签 实现 红黑树 一棵

本文主要是介绍如何实现一棵红黑树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.什么是红黑树

2.红黑树的实现

2.1红黑树的插入

新插入的结点应该是什么颜色的呢?

插入情况的分析

​编辑插入代码如下所示

2.2红黑树的查找

2.2检测红黑树


1.什么是红黑树?

红黑树是一棵接近平衡的二叉搜索树。由于AVL树在频繁大量改变数据的情况下,需要进行很多的旋转,会降低效率,因此,需要新的方案解决AVL树的不足,于是,有大佬发明了红黑树;红黑树是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是red或black。 通过对各个结点着色方式的限制红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。着色方式限制如下:

  • 每个结点不是红色就是黑色,但根节点必须是黑色的。
  • 如果一个节点是红色的,则它的两个孩子结点是黑色的(没有连续的红色结点)。
  • 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点(每条路径都包含相同数量的黑色结点)。
  • 注意:红黑树中的路径不是走到叶子结点,而是走到空。

为什么满足上述条件就可以保证最长路径不超过最短路径的2倍呢?极端条件下,最短路径为全黑,最长路径必须是一黑一红交替连接;此时,最长路径正好等于最短路径的2倍。

对比AVL树:AVL树高度很接近log_N,红黑树高度很接近2log_N,所以红黑树的查询效率比AVL树略差,但是几乎可以忽略不计,因为log_N足够小,所以他们之间查找的效率微乎其微。

2.红黑树的实现

(本文旨在了解红黑树,重点实现红黑树的插入)

2.1红黑树的插入

新插入的结点应该是什么颜色的呢?

红黑树的插入过程中需要保持红黑树的性质,所以,插入之前,每条路径上的黑色结点的数量是相等的,如果新插入的结点是黑色的,必然会破坏每条路径上黑色结点的数量相等的条件,需要调整;

如果插入红色结点呢?如果插入结点的父亲是黑色的,则没有破坏红黑树的性质,如果插入结点的父亲是红色的,则破坏了不能出现连续的红色结点的性质,需要调整。

总结一下就是,如果插入的结点是黑色的, 那么每次都需要调整,如果插入的结点是红色的,只有父结点是红色的,才需要调整;所以我们选择新增结点的颜色是红色的。

插入情况的分析

因为我们插入的结点的颜色是红色的,也就是上图中的cur结点,因为,插入之前的树是满足红黑树的性质的,所以,如果出现矛盾的话,p的颜色一定是红色的, g的结点一定是黑色的;此时,只剩下u结点的情况是不确定的,所以我们只需要分析u节点的情况。

情况一:u节点存在且为红色。处理方式为变色,p和u变黑g变红,如果g是根,把g变黑即可,如果g不是根,把g当成c,继续往上处理。如下图所示:

情况二:u不存在/u存在且为黑。在该情况下,又可以细分出四种情况。

  • p为g的左孩子,c为p的左孩子,以p为旋转中心进行右单旋调整。如下图所示:

  • p为g的右孩子,c为p的右孩子,以p为旋转中心进行左单旋调整。如下图所示:

  • p为g的左孩子,c为p的右孩子,以p为旋转中心进行左单旋,再以g为旋转中心进行右单旋,最后将cur变黑,将g变红。如下图所示:

  • p为g的右孩子,c为p的左孩子,以p为旋转中心进行右单旋,再以g为旋转中心进行左单旋,最后将cur变黑,将g变红。如下图所示:

插入代码如下所示

旋转操作和AVL树是相同的,此处不做讲解,不会的读者推荐阅读AVL树中有详细讲解

    bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv); // 红色的if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色if (cur == parent->_left){//       g//    p    u// cRotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//       g//    p     u//      cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;} }else{Node* uncle = grandfather->_left;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色//      g//   u     p//            cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		g//   u     p//      cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}

2.2红黑树的查找

在红黑树查找一个值和在AVL树中查找一个值是相同的。代码如下所示:

    Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_kv.first < key){cur = cur->_right;}else if (cur->_kv.first > key){cur = cur->_left;}else{return cur;}}return NULL;}

2.2检测红黑树

如何检测我们实现的红黑树是否正确呢?我们只需要检测该树是否满足红黑树的性质,也就是一下三点:

  • 1.根是黑色的
  • 2.没有连续的红色结点
  • 3.每条路径上的黑色结点的数量相等

检测策略:先求出一条路径上黑色结点的数量作为标准值,然后依次求每一条路径上黑色结点的数量,与标准值比较。代码如下:

bool Check(Node* cur, int blackNum, int refBlackNum){if (cur == nullptr){if (refBlackNum != blackNum){cout << "黑色节点的数量不相等" << endl;return false;}//cout << blackNum << endl;return true;}if (cur->_col == RED && cur->_parent->_col == RED){cout << cur->_kv.first << "存在连续的红色节点" << endl;return false;}if (cur->_col == BLACK)++blackNum;return Check(cur->_left, blackNum, refBlackNum)&& Check(cur->_right, blackNum, refBlackNum);}bool IsBalance(){if (_root && _root->_col == RED)return false;int refBlackNum = 0;Node* cur = _root;while (cur){if(cur->_col == BLACK)refBlackNum++;cur = cur->_left;}return Check(_root, 0, refBlackNum);}

这篇关于如何实现一棵红黑树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103983

相关文章

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ