mask rcnn解读

2024-08-24 18:08
文章标签 mask 解读 rcnn

本文主要是介绍mask rcnn解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇中介绍faster rcnn,这次mask 基本在上次的基础上加了点代码,参考和引用1. mask rcnn slides 2. kaiming he maskrcnn 3. Ardian Umam mask rcnn,欢迎fork简版mask rcnn

整体框架

这里写图片描述

RoIAlign

问题

  1. 做segment是pixel级别的,但是faster rcnn中roi pooling有2次量化操作导致了没有对齐
    这里写图片描述

  2. 两次量化,第一次roi映射feature时,第二次roi pooling时(这个图参考了youtube的视频,但是感觉第二次量化它画错了,根据上一讲ross的源码,不是缩小了,而是部分bin大小和步长发生变化)
    这里写图片描述

  3. RoIWarp,第一次量化了,第二次没有,RoIAlign两次都没有量化
    这里写图片描述

解决方案

和上一讲faster rcnn举的例子一样,输出7*7

  1. 划分7*7的bin(我们可以直接精确的映射到feature map来划分bin,不用第一次量化)
    这里写图片描述

  2. 每个bin中采样4个点,双线性插值
    这里写图片描述

  3. 对每个bin4个点做max或average pool

# pytorch
# 这是pytorch做法先采样到14*14,然后max pooling到7*7
pre_pool_size = cfg.POOLING_SIZE * 2
grid = F.affine_grid(theta, torch.Size((rois.size(0), 1, pre_pool_size, pre_pool_size)))
crops = F.grid_sample(bottom.expand(rois.size(0), bottom.size(1), bottom.size(2), bottom.size(3)), grid, mode=mode)
crops = F.max_pool2d(crops, 2, 2)
# tensorflow
pooled.append(tf.image.crop_and_resize(feature_maps[i], level_boxes, box_indices, self.pool_shape,method="bilinear"))

sigmoid代替softmax

利用分类的结果,在mask之路,只取对应类别的channel然后做sigmoid,减少类间竞争,避免出现一些洞之类(个人理解)

FPN

详见我的另一篇博客FPN解读

更多

前面我们介绍RoI Align是在每个bin中采样4个点,双线性插值,但也是一定程度上解读了mismatch问题,而旷视科技PLACES instance segmentation比赛中所用的是更精确的解决这个问题,对于每个bin,RoIAlign只用了4个值求平均,而旷视则直接利用积分(把bin中所有位置都插值出来)求和出这一块的像素值和然后求平均,这样更精确了但是很费时。

这里写图片描述

这里写图片描述

来源旷视科技peng chao分享的video和slides

Detectron部分代码细节点

  1. 无bn,因为batch太小了,使用affine channel
  2. mask分支,只使用fg_rois,只用前景的rois
  3. faster rcnn的rpn部分,是生成9*2=18个channel,然后每个格子对应9个anchor,2是前景和背景,使用softmax loss而Detectron中rpn是9个channel,使用sigmoid loss
  4. 所有的gt box都默认送到后面的fast rcnn和mask等分支中
  5. 准备gt_masks时,不是用gt_boxes去全图mask上扣,然后resize到28*28,而是用预测出来的fg_rois去全图的mask上扣然后resize到28*28,这样才能正常训练的mask分支,不然gt_masks的位置根本不对。这和我们采用gt_classes去抽取对应channel的score map做sigmoid一样,目的都是为了能让mask分支受到正常的监督,因为我们自己预测的类别可能是错的,这样抽取错误的channel去做sigmoid然后与gt_masks做loss,是错误的监督。

这篇关于mask rcnn解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103213

相关文章

Linux系统之authconfig命令的使用解读

《Linux系统之authconfig命令的使用解读》authconfig是一个用于配置Linux系统身份验证和账户管理设置的命令行工具,主要用于RedHat系列的Linux发行版,它提供了一系列选项... 目录linux authconfig命令的使用基本语法常用选项示例总结Linux authconfi

解读docker运行时-itd参数是什么意思

《解读docker运行时-itd参数是什么意思》在Docker中,-itd参数组合用于在后台运行一个交互式容器,同时保持标准输入和分配伪终端,这种方式适合需要在后台运行容器并保持交互能力的场景... 目录docker运行时-itd参数是什么意思1. -i(或 --interactive)2. -t(或 --

解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题

《解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题》在Spring开发中,@Autowired注解常用于实现依赖注入,它可以应用于类的属性、构造器或setter方法上,然... 目录1. 为什么 @Autowired 在属性上被警告?1.1 隐式依赖注入1.2 IDE 的警告:

Rust中的注释使用解读

《Rust中的注释使用解读》本文介绍了Rust中的行注释、块注释和文档注释的使用方法,通过示例展示了如何在实际代码中应用这些注释,以提高代码的可读性和可维护性... 目录Rust 中的注释使用指南1. 行注释示例:行注释2. 块注释示例:块注释3. 文档注释示例:文档注释4. 综合示例总结Rust 中的注释

解读Pandas和Polars的区别及说明

《解读Pandas和Polars的区别及说明》Pandas和Polars是Python中用于数据处理的两个库,Pandas适用于中小规模数据的快速原型开发和复杂数据操作,而Polars则专注于高效数据... 目录Pandas vs Polars 对比表使用场景对比Pandas 的使用场景Polars 的使用

Rust中的Drop特性之解读自动化资源清理的魔法

《Rust中的Drop特性之解读自动化资源清理的魔法》Rust通过Drop特性实现了自动清理机制,确保资源在对象超出作用域时自动释放,避免了手动管理资源时可能出现的内存泄漏或双重释放问题,智能指针如B... 目录自动清理机制:Rust 的析构函数提前释放资源:std::mem::drop android的妙

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

关于Gateway路由匹配规则解读

《关于Gateway路由匹配规则解读》本文详细介绍了SpringCloudGateway的路由匹配规则,包括基本概念、常用属性、实际应用以及注意事项,路由匹配规则决定了请求如何被转发到目标服务,是Ga... 目录Gateway路由匹配规则一、基本概念二、常用属性三、实际应用四、注意事项总结Gateway路由

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每