【数学分析笔记】第2章第4节收敛准则(1)

2024-08-24 12:44

本文主要是介绍【数学分析笔记】第2章第4节收敛准则(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2. 数列极限

2.4 收敛准则

收敛数列一定有界,有界数列不一定收敛。
问题:
(1)有界数列加什么条件可以保证收敛?
(2)有界数列不加其他条件,可得到什么弱一些的结论?

2.4.1 单调有界定理

【定理2.4.1】单调有界数列必定收敛。(单调增加有上界或单调减少有下界)
【证】不妨设 { x n } \{x_{n}\} {xn}单调增加,有上界。
{ x n } \{x_{n}\} {xn}为集合的数集(有重复的只能算一个元素)有上界,则必有上确界(确界存在定理)
记上确界为 β \beta β
(1) β \beta β是上界, ∀ n , x n ≤ β \forall n, x_{n}\le \beta n,xnβ
(2) β \beta β是最小上界 : ∀ ε > 0 , β − ε :\forall \varepsilon >0,\beta - \varepsilon :ε>0,βε不是上界,即 ∃ n 0 \exists n_{0} n0使得 x n 0 > β − ε x_{n_{0}}>\beta - \varepsilon xn0>βε
N = n 0 , ∀ n > N : x N = x n 0 ≤ x n N=n_{0}, \forall n > N:x_{N}=x_{n_{0}}\le x_{n} N=n0,n>N:xN=xn0xn(数列单调增加)
β − ε < x n 0 ≤ x n ≤ β \beta - \varepsilon<x_{n_{0}}\le x_{n}\le \beta βε<xn0xnβ
β − ε < x n ≤ β < β + ε \beta - \varepsilon< x_{n}\le \beta<\beta + \varepsilon βε<xnβ<β+ε
亦即 ∣ x n − β ∣ < ε |x_{n}-\beta|<\varepsilon xnβ<ε
所以 lim ⁡ n → ∞ x n = β \lim\limits_{n\to\infty}x_{n}=\beta nlimxn=β

【注】定理的意义 lim ⁡ n → ∞ x n = a \lim\limits_{n\to\infty}x_{n}=a nlimxn=a ∀ ε > 0 , ∃ N , ∀ n > N : ∣ x n − a ∣ < ε \forall \varepsilon>0,\exists N,\forall n>N:|x_{n}-a|<\varepsilon ε>0,N,n>N:xna<ε,有时候 a a a不知道,没法求解,用单调有界定理很有用,能间接求出 a a a


【例2.4.1】设 x 1 > 0 x_{1}>0 x1>0 x n + 1 = 1 + x n 1 + x n , n = 2 , 3 , . . . x_{n+1}=1+\frac{x_{n}}{1+x_{n}},n=2,3,... xn+1=1+1+xnxn,n=2,3,...,要求证明 { x n } \{x_{n}\} {xn}收敛,并求 lim ⁡ n → ∞ x n \lim\limits_{n\to\infty}x_{n} nlimxn
【解】 x 1 > 0 , x 2 = 1 + x 1 1 + x 1 > 0 x_{1}>0,x_{2}=1+\frac{x_{1}}{1+x_{1}}>0 x1>0,x2=1+1+x1x1>0
假设 x k > 0 x_{k}>0 xk>0 x k + 1 = 1 + x k 1 + x k > 0 x_{k+1}=1+\frac{x_{k}}{1+x_{k}}>0 xk+1=1+1+xkxk>0
由数学归纳法可知, x n > 0 x_{n}>0 xn>0
所以 1 < x n = 1 + x n − 1 1 + x n − 1 < 1 + x n x n = 2 , n = 2 , 3 , . . . 1<x_{n}=1+\frac{x_{n-1}}{1+x_{n-1}}<1+\frac{x_{n}}{x_{n}}=2,n=2,3,... 1<xn=1+1+xn1xn1<1+xnxn=2,n=2,3,...
{ x n } \{x_{n}\} {xn}有界
x n + 1 − x n = 1 + x n 1 + x n − ( 1 + x n − 1 1 + x n − 1 ) = x n + x n x n − 1 − x n − 1 − x n x n − 1 ( 1 + x n ) ( 1 + x n − 1 ) = x n − x n − 1 ( 1 + x n ) ( 1 + x n − 1 ) x_{n+1}-x_{n}=1+\frac{x_{n}}{1+x_{n}}-(1+\frac{x_{n-1}}{1+x_{n-1}})=\frac{x_{n}+x_{n}x_{n-1}-x_{n-1}-x_{n}x_{n-1}}{(1+x_{n})(1+x_{n-1})}=\frac{x_{n}-x_{n-1}}{(1+x_{n})(1+x_{n-1})} xn+1xn=1+1+xnxn(1+1+xn1xn1)=(1+xn)(1+xn1)xn+xnxn1xn1xnxn1=(1+xn)(1+xn1)xnxn1
所以 x n + 1 − x n x_{n+1}-x_{n} xn+1xn x n − x n − 1 x_{n}-x_{n-1} xnxn1同号
x 1 < x 2 x_{1}<x_{2} x1<x2,则 x 2 < x 3 , . . . , x n − 1 < x n x_{2}<x_{3},...,x_{n-1}<x_{n} x2<x3,...,xn1<xn,若 x 1 > x 2 x_{1}>x_{2} x1>x2,则 x 2 > x 3 , . . . , x n − 1 > x n x_{2}>x_{3},...,x_{n-1}>x_{n} x2>x3,...,xn1>xn,虽然我们无法判断这个数列到底是单调增加还是单调减少,但是我们可以判断这个数列是单调数列。
由于该数列单调且有界,则 { x n } \{x_{n}\} {xn}收敛。
lim ⁡ n → ∞ x n = a \lim\limits_{n\to\infty}x_{n}=a nlimxn=a,由 x n + 1 = 1 + x n 1 + x n x_{n+1}=1+\frac{x_{n}}{1+x_{n}} xn+1=1+1+xnxn,对等式两边同时取极限得 a = 1 + a 1 + a a=1+\frac{a}{1+a} a=1+1+aa,即 a + a 2 = 1 + 2 a a+a^{2}=1+2a a+a2=1+2a,亦即 a 2 = 1 + a a^{2}=1+a a2=1+a,所以 a 2 − a − 1 = 0 a^{2}-a-1=0 a2a1=0,由于 1 < x n < 2 1<x_{n}<2 1<xn<2,所以 a = 1 + 1 + 4 2 = 1 + 5 2 a=\frac{1+\sqrt{1+4}}{2}=\frac{1+\sqrt{5}}{2} a=21+1+4 =21+5
lim ⁡ n → ∞ x n = 1 + 5 2 \lim\limits_{n\to\infty}x_{n}=\frac{1+\sqrt{5}}{2} nlimxn=21+5


【例2.4.2】设 0 < x 1 < 1 , x n + 1 = x n ( 1 − x n ) 0<x_{1}<1,x_{n+1}=x_{n}(1-x_{n}) 0<x1<1,xn+1=xn(1xn),证明 { x n } \{x_{n}\} {xn}收敛,并求极限。
【解】由于 0 < x 1 < 1 , 0 < x 2 = x 1 ( 1 − x 1 ) < 1 0<x_{1}<1,0<x_{2}=x_{1}(1-x_{1})<1 0<x1<1,0<x2=x1(1x1)<1,假设 0 < x k < 1 0<x_{k}<1 0<xk<1,则 0 < x k + 1 = x k ( 1 − x k ) < 1 0<x_{k+1}=x_{k}(1-x_{k})<1 0<xk+1=xk(1xk)<1,由数学归纳法知 0 < x n < 1 0<x_{n}<1 0<xn<1,所以 { x n } \{x_{n}\} {xn}有界。
x n + 1 − x n = x n ( 1 − x n ) − x n = − x n 2 < 0 x_{n+1}-x_{n}=x_{n}(1-x_{n})-x_{n}=-x_{n}^{2}<0 xn+1xn=xn(1xn)xn=xn2<0
所以 x n + 1 < x n x_{n+1}<x_{n} xn+1<xn,所以 { x n } \{x_{n}\} {xn}是严格单调减少数列。
由于 { x n } \{x_{n}\} {xn}单调减少有下界 0 0 0,所以 { x n } \{x_{n}\} {xn}收敛,设 lim ⁡ n → ∞ x n = a \lim\limits_{n\to\infty}x_{n}=a nlimxn=a,由 x n + 1 = x n ( 1 − x n ) x_{n+1}=x_{n}(1-x_{n}) xn+1=xn(1xn),等式两边同时取极限得 a = a ( 1 − a ) a=a(1-a) a=a(1a),由于 { x n } \{x_{n}\} {xn}单调减少有下界 0 0 0,所以 a = 0 a=0 a=0,即 lim ⁡ n → ∞ x n = 0 \lim\limits_{n\to\infty}x_{n}=0 nlimxn=0
【计算这个 x n x_{n} xn和哪种无穷小量差不多(如 1 n \frac{1}{n} n1)】
lim ⁡ n → ∞ ( n x n ) = lim ⁡ n → ∞ n 1 x n \lim\limits_{n\to\infty}(nx_{n})=\lim\limits_{n\to\infty}\frac{n}{\frac{1}{x_{n}}} nlim(nxn)=nlimxn1n
由于 1 x n \frac{1}{x_{n}} xn1严格单调增加且 lim ⁡ n → ∞ 1 x n = + ∞ \lim\limits_{n\to\infty}\frac{1}{x_{n}}=+\infty nlimxn1=+,可以用Stolz定理,所以 lim ⁡ n → ∞ n − ( n − 1 ) 1 x n − 1 x n − 1 = lim ⁡ n → ∞ 1 x n − 1 − x n x n x n − 1 = lim ⁡ n → ∞ x n x n − 1 x n − 1 − x n = lim ⁡ n → ∞ x n − 1 2 ( 1 − x n − 1 ) x n − 1 − x n − 1 ( 1 − x n − 1 ) = lim ⁡ n → ∞ x n − 1 2 ( 1 − x n − 1 ) x n − 1 2 = lim ⁡ n → ∞ ( 1 − x n − 1 ) = 1 \lim\limits_{n\to\infty}\frac{n-(n-1)}{\frac{1}{x_{n}}-\frac{1}{x_{n-1}}}=\lim\limits_{n\to\infty}\frac{1}{\frac{x_{n-1}-x_{n}}{x_{n}x_{n-1}}}=\lim\limits_{n\to\infty}\frac{x_{n}x_{n-1}}{x_{n-1}-x_{n}}=\lim\limits_{n\to\infty}\frac{x_{n-1}^{2}(1-x_{n-1})}{x_{n-1}-x_{n-1}(1-x_{n-1})}=\lim\limits_{n\to\infty}\frac{x_{n-1}^{2}(1-x_{n-1})}{x_{n-1}^{2}}=\lim\limits_{n\to\infty}(1-x_{n-1})=1 nlimxn1xn11n(n1)=nlimxnxn1xn1xn1=nlimxn1xnxnxn1=nlimxn1xn1(1xn1)xn12(1xn1)=nlimxn12xn12(1xn1)=nlim(1xn1)=1
说明 lim ⁡ n → ∞ x n 1 n = 1 \lim\limits_{n\to\infty}\frac{x_{n}}{\frac{1}{n}}=1 nlimn1xn=1,即说明 { x n } \{x_{n}\} {xn} { 1 n } \{\frac{1}{n}\} {n1}是一种等价的关系,这个等价的关系是通过Stolz定理求出来的,以后会讲到。

这篇关于【数学分析笔记】第2章第4节收敛准则(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1102517

相关文章

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓

忽略某些文件 —— Git 学习笔记 05

忽略某些文件 忽略某些文件 通过.gitignore文件其他规则源如何选择规则源参考资料 对于某些文件,我们不希望把它们纳入 Git 的管理,也不希望它们总出现在未跟踪文件列表。通常它们都是些自动生成的文件,比如日志文件、编译过程中创建的临时文件等。 通过.gitignore文件 假设我们要忽略 lib.a 文件,那我们可以在 lib.a 所在目录下创建一个名为 .gi

取得 Git 仓库 —— Git 学习笔记 04

取得 Git 仓库 —— Git 学习笔记 04 我认为, Git 的学习分为两大块:一是工作区、索引、本地版本库之间的交互;二是本地版本库和远程版本库之间的交互。第一块是基础,第二块是难点。 下面,我们就围绕着第一部分内容来学习,先不考虑远程仓库,只考虑本地仓库。 怎样取得项目的 Git 仓库? 有两种取得 Git 项目仓库的方法。第一种是在本地创建一个新的仓库,第二种是把其他地方的某个

Git 的特点—— Git 学习笔记 02

文章目录 Git 简史Git 的特点直接记录快照,而非差异比较近乎所有操作都是本地执行保证完整性一般只添加数据 参考资料 Git 简史 众所周知,Linux 内核开源项目有着为数众多的参与者。这么多人在世界各地为 Linux 编写代码,那Linux 的代码是如何管理的呢?事实是在 2002 年以前,世界各地的开发者把源代码通过 diff 的方式发给 Linus,然后由 Linus