POJ 3468 A Simple Problem with Integers 树状数组 区间修改 区间查询

2024-08-24 12:18

本文主要是介绍POJ 3468 A Simple Problem with Integers 树状数组 区间修改 区间查询,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接点这儿

给你一个数列,最多10W次操作,要么区间统一加上某个值,要么查询某个区间的和。


第一反应肯定是线段树,但是呢,这个能不能用树状数组做呢?

如果是单点修改,区间查询,我们直接在原数列上进行树状数组的操作。


如果是区间修改,单点查询。由于树状数组每次update一个单点x之后,会对n>x的getsum(n)(或者说树状数组的Query(n)操作)都有影响。也就是说,虽然修改的是单点,但对查询的影响是区间的。从而我们可以利用这个,在保持原数列不改变的同时另找一个树状数组来记录每个位置修改的值。如果在区间[i, j]每个值增加delta,那么我们可以通过update(i, delta), update(j+1, -delta)的操作来使getsum(pos)的值就是pos这个位置到这一时刻位置为止的改变量。从而查询i处的值的话,只需返回a[i] + getsum(i)(a[i]是该位置的初始值)。


那么现在要区间查询,仍然可以借助区间修改,单点查询的思路,但是我们还要求Σgetsum(i)(i >= left value, i <= right value),这个操作直接写明显会浪费很大力气。

我们记树状数组维护的那个数组为b[](也就是说这个数组满足为点k处的修改值)

我们现在要求的是经过转换后有,那么在转换一下的话,我们就有了。那么到了这一步之后,我们可以发现,前两项都是一个树状数组的Query操作,而最后一项也可以表示成另一个树状数组i*bi的两次Query操作之差。从而我们找到了用树状数组模拟线段树区间操作的方法。

下面放出代码

[cpp]  view plain copy print ? 在CODE上查看代码片 派生到我的代码片
  1. #include <vector>  
  2. #include <list>  
  3. #include <map>  
  4. #include <set>  
  5. #include <deque>  
  6. #include <queue>  
  7. #include <stack>  
  8. #include <bitset>  
  9. #include <algorithm>  
  10. #include <functional>  
  11. #include <numeric>  
  12. #include <utility>  
  13. #include <sstream>  
  14. #include <iostream>  
  15. #include <iomanip>  
  16. #include <cstdio>  
  17. #include <cmath>  
  18. #include <cstdlib>  
  19. #include <cctype>  
  20. #include <string>  
  21. #include <cstring>  
  22. #include <cstdio>  
  23. #include <cmath>  
  24. #include <cstdlib>  
  25. #include <ctime>  
  26. #include <climits>  
  27.   
  28. #define up(i, lower, upper) for(int i = lower; i < upper; i++)  
  29. #define down(i, lower, upper) for(int i = upper-1; i >= lower; i--)  
  30.   
  31. using namespace std;  
  32.   
  33. #define MAX_N 100010  
  34. typedef pair<intint> pii;  
  35. typedef pair<doubledouble> pdd;  
  36. typedef vector<int> vi;  
  37. typedef vector<pii> vpii;  
  38. typedef long long ll;  
  39. typedef unsigned long long ull;  
  40.   
  41. const double pi = acos(-1.0);  
  42. const double eps = 1.0e-9;  
  43.   
  44. template<class T>  
  45.   
  46. inline bool read(T &n){  
  47.     T x = 0, tmp = 1; char c = getchar();  
  48.     while((c < '0' || c > '9') && c != '-' && c != EOF) c = getchar();  
  49.     if(c == EOF) return false;  
  50.     if(c == '-') c = getchar(), tmp = -1;  
  51.     while(c >= '0' && c <= '9') x *= 10, x += (c - '0'),c = getchar();  
  52.     n = x*tmp;  
  53.     return true;  
  54. }  
  55.   
  56. template <class T>  
  57. inline void write(T n) {  
  58.     if(n < 0) {  
  59.         putchar('-');  
  60.         n = -n;  
  61.     }  
  62.     int len = 0,data[20];  
  63.     while(n) {  
  64.         data[len++] = n%10;  
  65.         n /= 10;  
  66.     }  
  67.     if(!len) data[len++] = 0;  
  68.     while(len--) putchar(data[len]+48);  
  69. }  
  70.   
  71. struct BIT {  
  72.     ll sum[MAX_N];  
  73.     int len;  
  74.   
  75.     BIT() {  
  76.         len = 0;  
  77.         memset(sum, 0, sizeof sum);  
  78.     }  
  79.   
  80.     BIT(int len) : len(len) {  
  81.         memset(sum, 0, sizeof sum);  
  82.     }  
  83.   
  84.     ll lowbit(ll x) { return x&(-x); }  
  85.   
  86.     ll getsum(int n) {  
  87.         ll ans = 0;  
  88.         while(n > 0) ans+=sum[n], n-=lowbit(n);  
  89.         return ans;  
  90.     }  
  91.   
  92.     void update(int pos, ll val) {  
  93.         while(pos <= len) sum[pos] += val, pos+=lowbit(pos);  
  94.     }  
  95. };  
  96. //-------------------------------------------------------  
  97.   
  98. BIT a, b;  
  99.   
  100. int main() {  
  101.     int n, m, l, r, val;  
  102.     ll sum[100010] = { 0 };  
  103.     char str[2];  
  104.     read(n), read(m);  
  105.     a.len = b.len = n;  
  106.     up(i, 1, n+1) read(val), sum[i] = sum[i-1] + val;  
  107.     up(i, 0, m) {  
  108.         scanf("%s", str);  
  109.         if(str[0] == 'C') {  
  110.             read(l), read(r), read(val);  
  111.             a.update(l, val), a.update(r+1, -val);  
  112.             b.update(l, val*l), b.update(r+1, -val*(r+1));  
  113.         }  
  114.         else {  
  115.             read(l), read(r);  
  116.             //printf("%lld", sum[r] - sum[l-1] + a.getsum(r)*(r+1) - a.getsum(l-1)*l - b.getsum(r) + b.getsum(l-1));  
  117.             write(sum[r] - sum[l-1] + a.getsum(r)*(r+1) - a.getsum(l-1)*l - b.getsum(r) + b.getsum(l-1));  
  118.             puts("");  
  119.         }  
  120.     }  
  121.     return 0;  
  122. }  

这篇关于POJ 3468 A Simple Problem with Integers 树状数组 区间修改 区间查询的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1102460

相关文章

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

浅谈mysql的sql_mode可能会限制你的查询

《浅谈mysql的sql_mode可能会限制你的查询》本文主要介绍了浅谈mysql的sql_mode可能会限制你的查询,这个问题主要说明的是,我们写的sql查询语句违背了聚合函数groupby的规则... 目录场景:问题描述原因分析:解决方案:第一种:修改后,只有当前生效,若是mysql服务重启,就会失效;

MySQL多列IN查询的实现

《MySQL多列IN查询的实现》多列IN查询是一种强大的筛选工具,它允许通过多字段组合快速过滤数据,本文主要介绍了MySQL多列IN查询的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析与优化1.

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

Linux修改pip临时目录方法的详解

《Linux修改pip临时目录方法的详解》在Linux系统中,pip在安装Python包时会使用临时目录(TMPDIR),但默认的临时目录可能会受到存储空间不足或权限问题的影响,所以本文将详细介绍如何... 目录引言一、为什么要修改 pip 的临时目录?1. 解决存储空间不足的问题2. 解决权限问题3. 提

C++原地删除有序数组重复项的N种方法

《C++原地删除有序数组重复项的N种方法》给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度,不要使用额外的数组空间,你必须在原地修改输入数组并在使用O(... 目录一、问题二、问题分析三、算法实现四、问题变体:最多保留两次五、分析和代码实现5.1、问题分析5.

Linux文件名修改方法大全

《Linux文件名修改方法大全》在Linux系统中,文件名修改是一个常见且重要的操作,文件名修改可以更好地管理文件和文件夹,使其更具可读性和有序性,本文将介绍三种在Linux系统下常用的文件名修改方法... 目录一、引言二、使用mv命令修改文件名三、使用rename命令修改文件名四、mv命令和rename命

mybatis-plus 实现查询表名动态修改的示例代码

《mybatis-plus实现查询表名动态修改的示例代码》通过MyBatis-Plus实现表名的动态替换,根据配置或入参选择不同的表,本文主要介绍了mybatis-plus实现查询表名动态修改的示... 目录实现数据库初始化依赖包配置读取类设置 myBATis-plus 插件测试通过 mybatis-plu

MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固 通俗易懂版)

《MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固通俗易懂版)》本文主要讲解了MySQL中的多表查询,包括子查询、笛卡尔积、自连接、多表查询的实现方法以及多列子查询等,通过实际例子和操... 目录复合查询1. 回顾查询基本操作group by 分组having1. 显示部门号为10的部门名,员

Linux下修改hostname的三种实现方式

《Linux下修改hostname的三种实现方式》:本文主要介绍Linux下修改hostname的三种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下修改ho编程stname三种方式方法1:修改配置文件方法2:hFvEWEostnamectl命