L-Eval:一个60k左右长文评测数据集

2024-08-24 08:12

本文主要是介绍L-Eval:一个60k左右长文评测数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

前言

L-Eval是复旦大学邱锡鹏老师团队在 2023 年 7 月左右发布的一个标准化的长文本语言模型(LCLMs)评估数据集,包含20个子任务411篇长文档平均长度为7217个单词,超过2000个人工标记的QA对。它分为封闭型任务开放型任务,涵盖了法律、金融、学校讲座、长对话、新闻、长篇小说和会议等多个领域,旨在通过不同的评价方法,如长度指令增强(LIE)评价和LLM裁判,来准确反映LCLMs的能力。结果表明,在大多数任务中,使用16k上下文通常能够实现比使用检索到的4k上下文作为输入更好的或相当的性能。在L-Eval上测试了6个长上下文开源模型:LLaMa、LLaMa2、LongChat-16k、ChatGLM2-8k、XGen-8和MPT-65k。

L-Eval: Instituting Standardized Evaluation for Long Context Language Models

  • Github:https://github.com/OpenLMLab/LEval
  • Paper:https://arxiv.org/pdf/2307.11088v1
  • Dataset:https://huggingface.co/datasets/L4NLP/LEval

数据收集与标注

为了追求多样化、全面且相关的数据,我们从广泛的平台和来源获取数据集。这些数据集代表了日常生活和专业领域的各个方面,为长上下文语言模型(LCLMs)带来了不同的挑战。我们利用了以前开源数据集的资源、Coursera字幕、公司网站的收入电话记录、GitHub等。L-Eval中的指令风格包括多项选择题、学校数学问题、从长篇对话中检索关键话题、文本摘要和抽象问题回答,涵盖了广泛的任务。每个数据集的构建如下。
在这里插入图片描述

Lectures from Coursera

Coursera讲座数据集来源于Coursera网站。我们选择了4门课程:

  • 向数据驱动决策提问
  • 数据科学家的工具箱
  • 从脏数据到清洁数据的处理
  • 改进深度神经网络:超参数调整、正则化和优化

输入的长文档是视频的字幕。问题和正确答案由作者标注。Coursera的指令风格采用多项选择格式。为了增加任务的难度,我们设置了多个正确选项。如果没有选择所有正确选项,则只能获得该问题总分的四分之一。

在这里插入图片描述

Grade School Math

小学数学数据集来源于GSM8k数据集中的100个小学数学问题。增加高质量和复杂的例子通常对解决数学问题有积极影响。我们为这项任务构建了16个上下文示例,其中包括8个来自chain-of-thought-hub的最难提示,其余8个由我们构建。2k或4k上下文长度的模型在编码16个示例时遇到困难。我们用新构建的例子进行了实验,它的表现优于仅编码8个例子。
在这里插入图片描述

QuALITY in L-Eval

来源于包含多个选择题的 QuALITY 多项选择QA数据集,这些选择题源自古腾堡计划(https://www.gutenberg.org/)的文献。我们筛选了20个长故事和202个问题,并纠正/删除了注释错误的题目。我们发现QuALITY中的大多数问题可以通过从长文本中提取段落来解决。我们进一步增强了需要全局信息的问题,例如:

  • 从故事中最长的句子中我们可以推断出什么?
  • 最长的对话是由谁说的?
  • 提取故事中最长句子中提到的名称。

在这里插入图片描述

Topic retrival

主题检索数据集来自 LongChat 存储库,其任务风格专注于从广泛的聊天历史中检索话题。近期研究表明,语言模型擅长从输入上下文的开头或结尾检索信息,但通常在中间部分会迷失(lost in the middle)。为了使任务更具挑战性,我们通过要求模型提取第二个和第三个话题来增强原始任务。

在这里插入图片描述

TPO in L-Eval

TPO中的问答数据集来源于TOEFL Practice Online,我们从TOEFL-QA 收集数据,并整合了单个TPO中的所有讲座。整合后,我们选择了最长的15个讲座。

在这里插入图片描述

Questions on Public Earning Call transcripts

公开收益电话记录 “financial qa” 问题,该数据集源自公司网站投资者关系部分的收益电话记录,包括Oclaro、Theragenics、FS KKR Capital Corp、LaSalle Incorporated、Renewable Energy Group等公司的记录。问题和答案对由我们注释。考虑到非金融学生注释的成本,我们仅注释了6个记录和52个问题。
在这里插入图片描述

Questions on Legal Contracts

法律领域的问答问题来自CUAD(Contract Understanding Atticus Dataset)数据集,该数据集旨在支持自动化法律合同审查的NLP研究。我们从CUAD中手动筛选了20个带有注释QA对的文档。(在表1中表示为“legal contract qa”)

在这里插入图片描述

Multi-turn Dialogue based on Multi-Documents

多文档对话数据集采样自 MultiDoc2Dial 数据集,旨在模拟基于多个文档的目标导向对话。它包含来自金融、旅行、娱乐和购物等4个不同领域的对话。数据集中的每个对话都基于2-5个相关文档,涵盖该领域内的不同主题。(在表1中表示为“multidoc qa”)

在这里插入图片描述

Natural Questions in L-Eval

L-Eval中的自然问题:我们从Google Research数据集的Natural Question中筛选了20个维基百科长文档。可以回答问题的文档被合并,重复的问题被删除。(在表1中表示为“natural question”)

在这里插入图片描述

NarrativeQA in L-Eval

该数据集收集自NarrativeQA,拥有L-Eval中最长的文档长度。原始的问答数据集是使用来自古腾堡计划的完整书籍和来自各种网站的电影剧本创建的。书籍和剧本的摘要取自维基百科,并提供给注释者。我们的工作重点是纠正注释错误,例如,有些问题中的主要角色在输入文档中根本没有出现。(在表1中表示为“narrative qa”)

在这里插入图片描述

QA on Scientific Papers

从Qasper数据集中筛选,这是一个专注于NLP论文的问答资源。数据集是使用从 Semantic Scholar Open Research Corpus (S2ORC) 中提取的NLP论文构建的。筛选后,我们删除了无法回答的问题和提取版本的答案。我们还发现了一些相同问题产生矛盾答案的情况。我们通过仔细审查论文并纠正错误回答来解决这个问题。(在表1中表示为“scientific qa”)

在这里插入图片描述

Government Reports Summarization

政府报告摘要数据集,由美国政府研究机构如国会研究服务和政府问责办公室撰写的长篇报告组成。与其它长文档摘要数据集相比,此数据集中的文档和摘要更长。我们从原始数据集中手动筛选了13篇有人工编写摘要的文档。(在表1中表示为“gov report summ”)

在这里插入图片描述

Query-based Meeting Summarization

基于查询的会议摘要,源自QMSum数据集,包含基于查询的会议摘要。基于查询的摘要旨在根据特定方面总结文档。我们选择了20个附有查询的会议记录,特别选择了那些不容易通过检索方法解决的记录。(在表1中表示为“meeting summ”)

在这里插入图片描述

News Summarization

新闻摘要取自 Multi-News 数据集。原始的Multi-News数据集包含新闻文章以及这些文章的人工编写摘要,这些文章来自newser.com网站,每篇文章包含多个短新闻。我们为L-Eval基准测试选择了10篇文章。(在表1中表示为“news summ”)

在这里插入图片描述

Collaborative Writing and Reviewing for Papers

论文写作与审稿协作任务旨在帮助研究人员处理科学论文的写作,如纠正语法错误或拼写错误,撰写某些部分等。L-Eval中的论文写作助手任务包括:

  • 1)编写摘要部分
  • 2)编写相关工作部分
  • 3)最后为这篇论文提供审稿意见。

值得注意的是,我们不建议审稿人使用大型模型进行审稿。我们的目标是帮助作者改进他们的论文,因此我们要求模型提供一些有价值的建议并提出一些问题。我们为L-Eval筛选了20篇有良好审稿意见的论文。我们使用了Yuan等人处理过的PDF文件。(在表1中表示为“paper assistant”)

在这里插入图片描述

Patent Summarization

专利摘要源自BigPatent项目,包含130万份美国专利文档以及人工编写的摘要,我们从原始数据集中选择了13项专利。(在表1中表示为“patent summ”)

在这里插入图片描述

Review (Opinion) Summarization

评论(意见)摘要旨在从酒店或餐厅的客户评论中总结评论。我们从SPACE数据集的验证和测试集中获取了20个样本,其中基于每个酒店的100条输入评论创建了人工编写的摘要。SPACE包含TripAdvisor上的酒店客户评论,有1100万条训练评论涵盖11000家酒店。原始任务要求模型从多个方面(如食物、位置、清洁度等)总结酒店。我们通过在GPT-4上执行Self-Instruct来构建评论摘要的指令。(在表1中表示为“review summ”)
在这里插入图片描述

TV Show Summarization

电视节目摘要源自SummScreen数据集,原始数据集是结合了电视剧剧本和剧集回顾的抽象摘要数据集。SummScreen是从粉丝贡献的网站构建的。我们为L-Eval筛选了13个剧本。(在表1中表示为“tv show summ”)
在这里插入图片描述

四种评估方式

这一部分描述了评估长上下文语言模型所采用的不同方法和指标。评估过程首先将所有任务分为两组:封闭式生成和开放式生成,每组采用不同的评估指标。

  • 考试评估(Exam Evaluation)
    设计用于封闭式任务,如多项选择题、多答案问题、数学问题和话题检索。这些任务使用与评分考试相同的完全匹配指标进行评估。例如,在多项答案问题中,如果预测答案没有涵盖所有正确答案,则只授予该问题分数的四分之一。

  • 5.2 N-gram匹配评估
    对于开放式生成组,包括摘要、抽象问题回答和写作辅助等任务,采用先前广泛使用的N-gram匹配评估指标:F1和ROUGE。这些自动指标的低成本使得能够评估L-Eval中的所有样本。然而,这些指标可能难以区分性能差距不大的模型,因为它们依赖于词汇匹配。

  • 5.3 大型语言模型评估(Large Language Model Evaluation)
    使用像GPT4这样的高效能大型语言模型作为人类评估者。L-Eval中的LLM评估采用成对比较格式,与流行的指令跟随语言模型基准AlpacaEval类似。选择turbo-16k-0613作为基线,并建议报告你的模型与turbo-16k-0613的胜率比较。还提供了Claude 1.3的预测,其上下文长度为100k,当你的模型能够在显著胜利turbo-16k时,你也可以报告与Claude-100k的胜率比较。

  • 5.4 人类评估(Human Evaluation)
    尽管LLM评估倾向于偏好详细答案,但实际中它通常选择更长、更详细的输出,即使这些细节在长文档中没有支持。因此,也需要人类评估。人类评估者根据1到5的评分标准对模型的输出进行评分,其中1表示输出差,5表示输出优秀。使用12个长文档的子集和85个问题进行人类评估。

在这里插入图片描述
这里只放一张部分评测结果的图吧,结论基本上就是闭源模型在自动评估指标上通常优于开源模型,特别是在需要精确匹配的任务上。然而,在开放式生成任务,如摘要任务中,这种差距不太明显,这可能是因为摘要任务更多依赖于基本语言生成能力,而不是深层推理。

总结

L-Eval 数据集的任务和指令风格包括:

  • 多项选择题(coursera, quality, tpo)
  • 数学问题(gsm100)
  • 话题检索(topic_retrieval)
  • 各种形式的问题回答(financial_qa, legal_contract_qa, multidoc_qa, natural_question, narrative_qa, scientific_qa)
  • 摘要任务(gov_report_summ, meeting_summ, news_summ, paper_assistant, patent_summ, review_summ, tv_show_summ)

因为这篇工作比较早,所以上下文长度其实并不是太长,infiniteBench的论文里 Table 1 也提到了,L-Eval 平均长度也就 4k-60k,所以只是用于学习和记录。
在这里插入图片描述

这篇关于L-Eval:一个60k左右长文评测数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101931

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者