深度学习小笔记01-看过的博客

2024-08-24 07:58

本文主要是介绍深度学习小笔记01-看过的博客,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面的话:本来这篇博文我自己归为转载。但是随着CSDN更新,后续的更新需要附带转载链接,这里转载链接很多,于是乎我后来改成原创了,实际上并不是,各个对应的链接是原文或者资料来源。私自归类汇总的行为构成了一次知识侵权,这并不是我本意。
卷积神经网络CNN总结

【重磅】计算机视觉和 CNN 发展十一座里程碑(附论文下载)-来自公众号

卷积神经网络超详细介绍(这篇文章写的很丰富,条理清晰内容广泛,应该多读几遍。顺便吐槽作者Markdown排版空格部分没敲,然后有的排版有问题)
- 深度学习AlexNet模型详细分析
- “发展更好的模型实际上是不断试错的过程”
- 从科学的观点出发,如果不知道神经网络为什么取得了如此好的效果,那么只能靠不停的实验来寻找更好的模型。
- ZF Net不仅是2013年比赛的冠军,还对CNN的运作机制提供了极好的直观信息,展示了更多提升性能的方法。论文所描述的可视化方法不仅有助于弄清CNN的内在机理,也为优化网络架构提供了有用的信息。Deconv可视化方法和 occlusion 实验
- GoogLeNet Incepetion V1《Going deeper with convolutions》。之所以名为“GoogLeNet”而非“GoogleNet”,文章说是为了向早期的LeNet致敬。
- 输入通道数为K,输出通道数为L,那么卷积核个数为KL。因为高维卷积计算是多个通道与多个卷积核分别进行二维计算,
所以K个通道会需要K个卷积核,计算之后,合并也就是相加得到一个通道,又因为输出通道为L,所以需要K
L个卷积核。然后就是如何求解参数数量?其实很简单,就是卷积核个数乘以卷积核尺寸,para=IJK*L
- GoogleNet Inception V2
V2和V1的最大的不同就是,V2增加了Batch Normalization。《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》

BN的意义:解决的问题是梯度消失和梯度爆炸的问题

  • 梯度消失:浅层基本不学习,权值变化小,后面几层一直在学习,结果就是后面几层基本可以表示整个网络,失去了深度的意义。
  • 第一层偏移量的梯度 = 激活层斜率1 x 权值1 x 激活层斜率2 x …激活层斜率(n-1) x 权值(n-1) x 激活层斜率n 假如激活层斜率均为最大值0.25,所有层的权值为100,这样梯度就会指数增加。
  • 12.3.6需要注意的是在使用BN的过程中,作者发现Sigmoid激活函数比Relu效果要好。

  • 12.4.3:问题:任意nxn的卷积都可以通过1xn卷积后接nx1卷积来替代。实际上,作者发现在网络的前期使用这种分解效果并不好,还有在中度大小的feature map上使用效果才会更好。(对于mxm大小的feature map,建议m在12到20之间)。
  • (来自我的理解:)ResNet其实在本质上包含了inception的思想,多层resnet的小网络叠加实现了不同尺度的卷积核的效果,同时因为有一份来自源数据的copy,达到的效果其实类似于1*1的保留效果,更像是对inception的一次精华提取。

ResNet, AlexNet, VGG, Inception: 理解各种各样的CNN架构
英文帖原文1  英文帖原文2

这个值得看看

你真的明白神经网络是什么?

  • 神经网络是函数
  • 在linearity + non-linearity的结构下,逼近理论(universal approximation theorem)就会起作用
  • 损失函数是衡量逼近效果的量化工具:现实情况是,根据不同的任务以及神经网络训练的不同阶段,可以采用不同的损失函数。例如MSE是神经网络默认的loss funhttps://www.jianshu.com/p/f743bd9041b3ction,而线性回归问题用NLLoss比MSE更好,SSD中预测bounding box的模型则采用的是MAE。
  • 神经网络特别钟爱经过标准化处理后的数据。标准化处理指的是,data减去它的均值,再除以它的标准差,最终data将呈现均值为0方差为1的数据分布。([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])就是Imagenet dataset的标准化系数(RGB三个通道对应三组系数),当需要将imagenet预训练的参数迁移到另一神经网络时,被迁移的神经网络就需要使用imagenet的系数,否则预训练不仅无法起到应有的作用甚至还会帮倒忙。

空洞卷积(dilated convolution)理解

这篇关于深度学习小笔记01-看过的博客的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101894

相关文章

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学