hadoop入门--使用MapReduce统计每个航班班次

2024-08-24 02:58

本文主要是介绍hadoop入门--使用MapReduce统计每个航班班次,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

案例基于hadoop 2.73,伪分布式集群

一,创建一个MapReduce应用

MapReduce应用结构如图:
这里写图片描述

1、引入maven依赖

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>com.hadoop</groupId><artifactId>beginner</artifactId><version>1.0-SNAPSHOT</version><packaging>jar</packaging><name>beginner</name><url>http://maven.apache.org</url><properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding></properties><dependencies><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-core</artifactId><version>1.2.1</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>2.7.3</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>2.7.3</version></dependency><dependency><groupId>au.com.bytecode</groupId><artifactId>opencsv</artifactId><version>2.4</version></dependency></dependencies><build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-shade-plugin</artifactId><version>1.2.1</version><executions><execution><phase>package</phase><goals><goal>shade</goal></goals><configuration><transformers><transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer"><mainClass>com.hadoop.FlightsByCarrier</mainClass></transformer></transformers></configuration></execution></executions></plugin></plugins></build></project>

2、MapReduce Driver代码

是用户与hadoop集群交互的客户端,在此配置MapReduce Job。

package com.hadoop;import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;public class FlightsByCarrier {public static void main(String[] args)  throws Exception {Job job = new Job();job.setJarByClass(FlightsByCarrier.class);job.setJobName("FlightsByCarrier");TextInputFormat.addInputPath(job, new Path(args[0]));job.setInputFormatClass(TextInputFormat.class);job.setMapperClass(FlightsByCarrierMapper.class);job.setReducerClass(FlightsByCarrierReducer.class);TextOutputFormat.setOutputPath(job, new Path(args[1]));job.setOutputFormatClass(TextOutputFormat.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);job.waitForCompletion(true);}
}

3、MapReduce Mapper代码

package com.hadoop;import au.com.bytecode.opencsv.CSVParser;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class FlightsByCarrierMapper extends Mapper<LongWritable, Text, Text, IntWritable>{@Overrideprotected void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException {if (key.get() > 0) {String[] lines = new CSVParser().parseLine(value.toString());context.write(new Text(lines[8]), new IntWritable(1));}}
}

4、MapReduce Reducer代码

package com.hadoop;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class FlightsByCarrierReducer extends Reducer<Text, IntWritable, Text, IntWritable>{@Overrideprotected void reduce(Text token, Iterable<IntWritable> counts,Context context) throws IOException, InterruptedException {int sum = 0;for (IntWritable count : counts) {sum+= count.get();}context.write(token, new IntWritable(sum));}
}

5、利用idea maven打jar包

jar包名称为:beginner-1.0-SNAPSHOT.jar

6、上传到linux虚拟机

代码是在window系统中的idea编写完成,需要上传到Linux虚拟机。

7、运行MapReduce Driver,处理航班数据

hadoop jar beginner-1.0-SNAPSHOT.jar  /user/root/2008.csv /user/root/output/flightsCount

运行情况如下:

18/01/09 02:29:52 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
18/01/09 02:29:52 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
18/01/09 02:29:53 INFO input.FileInputFormat: Total input paths to process : 1
18/01/09 02:29:54 INFO mapreduce.JobSubmitter: number of splits:6
18/01/09 02:29:54 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1515491426576_0002
18/01/09 02:29:54 INFO impl.YarnClientImpl: Submitted application application_1515491426576_0002
18/01/09 02:29:55 INFO mapreduce.Job: The url to track the job: http://slave1:8088/proxy/application_1515491426576_0002/
18/01/09 02:29:55 INFO mapreduce.Job: Running job: job_1515491426576_0002
18/01/09 02:30:01 INFO mapreduce.Job: Job job_1515491426576_0002 running in uber mode : false
18/01/09 02:30:01 INFO mapreduce.Job:  map 0% reduce 0%
18/01/09 02:30:17 INFO mapreduce.Job:  map 39% reduce 0%
18/01/09 02:30:19 INFO mapreduce.Job:  map 52% reduce 0%
18/01/09 02:30:21 INFO mapreduce.Job:  map 86% reduce 0%
18/01/09 02:30:22 INFO mapreduce.Job:  map 100% reduce 0%
18/01/09 02:30:31 INFO mapreduce.Job:  map 100% reduce 100%
18/01/09 02:30:32 INFO mapreduce.Job: Job job_1515491426576_0002 completed successfully
18/01/09 02:30:32 INFO mapreduce.Job: Counters: 49File System CountersFILE: Number of bytes read=63087558FILE: Number of bytes written=127016400FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0HDFS: Number of bytes read=689434454HDFS: Number of bytes written=197HDFS: Number of read operations=21HDFS: Number of large read operations=0HDFS: Number of write operations=2Job Counters Launched map tasks=6Launched reduce tasks=1Data-local map tasks=6Total time spent by all maps in occupied slots (ms)=110470Total time spent by all reduces in occupied slots (ms)=7315Total time spent by all map tasks (ms)=110470Total time spent by all reduce tasks (ms)=7315Total vcore-milliseconds taken by all map tasks=110470Total vcore-milliseconds taken by all reduce tasks=7315Total megabyte-milliseconds taken by all map tasks=113121280Total megabyte-milliseconds taken by all reduce tasks=7490560Map-Reduce FrameworkMap input records=7009729Map output records=7009728Map output bytes=49068096Map output materialized bytes=63087588Input split bytes=630Combine input records=0Combine output records=0Reduce input groups=20Reduce shuffle bytes=63087588Reduce input records=7009728Reduce output records=20Spilled Records=14019456Shuffled Maps =6Failed Shuffles=0Merged Map outputs=6GC time elapsed (ms)=6818CPU time spent (ms)=38010Physical memory (bytes) snapshot=1807056896Virtual memory (bytes) snapshot=13627478016Total committed heap usage (bytes)=1370488832Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format Counters Bytes Read=689433824File Output Format Counters Bytes Written=197

8、查看航班数据

hadoop fs -cat /user/root/output/flightsCount/part-r-00000

结果如下:

9E  262208
AA  604885
AQ  7800
AS  151102
B6  196091
CO  298455
DL  451931
EV  280575
F9  95762
FL  261684
HA  61826
MQ  490693
NW  347652
OH  197607
OO  567159
UA  449515
US  453589
WN  1201754
XE  374510
YV  254930

参考资料:
1、《Hadoop For Dummies》

这篇关于hadoop入门--使用MapReduce统计每个航班班次的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101251

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

c# checked和unchecked关键字的使用

《c#checked和unchecked关键字的使用》C#中的checked关键字用于启用整数运算的溢出检查,可以捕获并抛出System.OverflowException异常,而unchecked... 目录在 C# 中,checked 关键字用于启用整数运算的溢出检查。默认情况下,C# 的整数运算不会自

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W