hadoop入门--使用MapReduce统计每个航班班次

2024-08-24 02:58

本文主要是介绍hadoop入门--使用MapReduce统计每个航班班次,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

案例基于hadoop 2.73,伪分布式集群

一,创建一个MapReduce应用

MapReduce应用结构如图:
这里写图片描述

1、引入maven依赖

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>com.hadoop</groupId><artifactId>beginner</artifactId><version>1.0-SNAPSHOT</version><packaging>jar</packaging><name>beginner</name><url>http://maven.apache.org</url><properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding></properties><dependencies><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-core</artifactId><version>1.2.1</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>2.7.3</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>2.7.3</version></dependency><dependency><groupId>au.com.bytecode</groupId><artifactId>opencsv</artifactId><version>2.4</version></dependency></dependencies><build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-shade-plugin</artifactId><version>1.2.1</version><executions><execution><phase>package</phase><goals><goal>shade</goal></goals><configuration><transformers><transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer"><mainClass>com.hadoop.FlightsByCarrier</mainClass></transformer></transformers></configuration></execution></executions></plugin></plugins></build></project>

2、MapReduce Driver代码

是用户与hadoop集群交互的客户端,在此配置MapReduce Job。

package com.hadoop;import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;public class FlightsByCarrier {public static void main(String[] args)  throws Exception {Job job = new Job();job.setJarByClass(FlightsByCarrier.class);job.setJobName("FlightsByCarrier");TextInputFormat.addInputPath(job, new Path(args[0]));job.setInputFormatClass(TextInputFormat.class);job.setMapperClass(FlightsByCarrierMapper.class);job.setReducerClass(FlightsByCarrierReducer.class);TextOutputFormat.setOutputPath(job, new Path(args[1]));job.setOutputFormatClass(TextOutputFormat.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);job.waitForCompletion(true);}
}

3、MapReduce Mapper代码

package com.hadoop;import au.com.bytecode.opencsv.CSVParser;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class FlightsByCarrierMapper extends Mapper<LongWritable, Text, Text, IntWritable>{@Overrideprotected void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException {if (key.get() > 0) {String[] lines = new CSVParser().parseLine(value.toString());context.write(new Text(lines[8]), new IntWritable(1));}}
}

4、MapReduce Reducer代码

package com.hadoop;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class FlightsByCarrierReducer extends Reducer<Text, IntWritable, Text, IntWritable>{@Overrideprotected void reduce(Text token, Iterable<IntWritable> counts,Context context) throws IOException, InterruptedException {int sum = 0;for (IntWritable count : counts) {sum+= count.get();}context.write(token, new IntWritable(sum));}
}

5、利用idea maven打jar包

jar包名称为:beginner-1.0-SNAPSHOT.jar

6、上传到linux虚拟机

代码是在window系统中的idea编写完成,需要上传到Linux虚拟机。

7、运行MapReduce Driver,处理航班数据

hadoop jar beginner-1.0-SNAPSHOT.jar  /user/root/2008.csv /user/root/output/flightsCount

运行情况如下:

18/01/09 02:29:52 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
18/01/09 02:29:52 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
18/01/09 02:29:53 INFO input.FileInputFormat: Total input paths to process : 1
18/01/09 02:29:54 INFO mapreduce.JobSubmitter: number of splits:6
18/01/09 02:29:54 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1515491426576_0002
18/01/09 02:29:54 INFO impl.YarnClientImpl: Submitted application application_1515491426576_0002
18/01/09 02:29:55 INFO mapreduce.Job: The url to track the job: http://slave1:8088/proxy/application_1515491426576_0002/
18/01/09 02:29:55 INFO mapreduce.Job: Running job: job_1515491426576_0002
18/01/09 02:30:01 INFO mapreduce.Job: Job job_1515491426576_0002 running in uber mode : false
18/01/09 02:30:01 INFO mapreduce.Job:  map 0% reduce 0%
18/01/09 02:30:17 INFO mapreduce.Job:  map 39% reduce 0%
18/01/09 02:30:19 INFO mapreduce.Job:  map 52% reduce 0%
18/01/09 02:30:21 INFO mapreduce.Job:  map 86% reduce 0%
18/01/09 02:30:22 INFO mapreduce.Job:  map 100% reduce 0%
18/01/09 02:30:31 INFO mapreduce.Job:  map 100% reduce 100%
18/01/09 02:30:32 INFO mapreduce.Job: Job job_1515491426576_0002 completed successfully
18/01/09 02:30:32 INFO mapreduce.Job: Counters: 49File System CountersFILE: Number of bytes read=63087558FILE: Number of bytes written=127016400FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0HDFS: Number of bytes read=689434454HDFS: Number of bytes written=197HDFS: Number of read operations=21HDFS: Number of large read operations=0HDFS: Number of write operations=2Job Counters Launched map tasks=6Launched reduce tasks=1Data-local map tasks=6Total time spent by all maps in occupied slots (ms)=110470Total time spent by all reduces in occupied slots (ms)=7315Total time spent by all map tasks (ms)=110470Total time spent by all reduce tasks (ms)=7315Total vcore-milliseconds taken by all map tasks=110470Total vcore-milliseconds taken by all reduce tasks=7315Total megabyte-milliseconds taken by all map tasks=113121280Total megabyte-milliseconds taken by all reduce tasks=7490560Map-Reduce FrameworkMap input records=7009729Map output records=7009728Map output bytes=49068096Map output materialized bytes=63087588Input split bytes=630Combine input records=0Combine output records=0Reduce input groups=20Reduce shuffle bytes=63087588Reduce input records=7009728Reduce output records=20Spilled Records=14019456Shuffled Maps =6Failed Shuffles=0Merged Map outputs=6GC time elapsed (ms)=6818CPU time spent (ms)=38010Physical memory (bytes) snapshot=1807056896Virtual memory (bytes) snapshot=13627478016Total committed heap usage (bytes)=1370488832Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format Counters Bytes Read=689433824File Output Format Counters Bytes Written=197

8、查看航班数据

hadoop fs -cat /user/root/output/flightsCount/part-r-00000

结果如下:

9E  262208
AA  604885
AQ  7800
AS  151102
B6  196091
CO  298455
DL  451931
EV  280575
F9  95762
FL  261684
HA  61826
MQ  490693
NW  347652
OH  197607
OO  567159
UA  449515
US  453589
WN  1201754
XE  374510
YV  254930

参考资料:
1、《Hadoop For Dummies》

这篇关于hadoop入门--使用MapReduce统计每个航班班次的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101251

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

Ubuntu如何分配​​未使用的空间

《Ubuntu如何分配​​未使用的空间》Ubuntu磁盘空间不足,实际未分配空间8.2G因LVM卷组名称格式差异(双破折号误写)导致无法扩展,确认正确卷组名后,使用lvextend和resize2fs... 目录1:原因2:操作3:报错5:解决问题:确认卷组名称​6:再次操作7:验证扩展是否成功8:问题已解

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核