hadoop入门--使用MapReduce统计每个航班班次

2024-08-24 02:58

本文主要是介绍hadoop入门--使用MapReduce统计每个航班班次,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

案例基于hadoop 2.73,伪分布式集群

一,创建一个MapReduce应用

MapReduce应用结构如图:
这里写图片描述

1、引入maven依赖

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>com.hadoop</groupId><artifactId>beginner</artifactId><version>1.0-SNAPSHOT</version><packaging>jar</packaging><name>beginner</name><url>http://maven.apache.org</url><properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding></properties><dependencies><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-core</artifactId><version>1.2.1</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>2.7.3</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>2.7.3</version></dependency><dependency><groupId>au.com.bytecode</groupId><artifactId>opencsv</artifactId><version>2.4</version></dependency></dependencies><build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-shade-plugin</artifactId><version>1.2.1</version><executions><execution><phase>package</phase><goals><goal>shade</goal></goals><configuration><transformers><transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer"><mainClass>com.hadoop.FlightsByCarrier</mainClass></transformer></transformers></configuration></execution></executions></plugin></plugins></build></project>

2、MapReduce Driver代码

是用户与hadoop集群交互的客户端,在此配置MapReduce Job。

package com.hadoop;import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;public class FlightsByCarrier {public static void main(String[] args)  throws Exception {Job job = new Job();job.setJarByClass(FlightsByCarrier.class);job.setJobName("FlightsByCarrier");TextInputFormat.addInputPath(job, new Path(args[0]));job.setInputFormatClass(TextInputFormat.class);job.setMapperClass(FlightsByCarrierMapper.class);job.setReducerClass(FlightsByCarrierReducer.class);TextOutputFormat.setOutputPath(job, new Path(args[1]));job.setOutputFormatClass(TextOutputFormat.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);job.waitForCompletion(true);}
}

3、MapReduce Mapper代码

package com.hadoop;import au.com.bytecode.opencsv.CSVParser;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class FlightsByCarrierMapper extends Mapper<LongWritable, Text, Text, IntWritable>{@Overrideprotected void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException {if (key.get() > 0) {String[] lines = new CSVParser().parseLine(value.toString());context.write(new Text(lines[8]), new IntWritable(1));}}
}

4、MapReduce Reducer代码

package com.hadoop;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class FlightsByCarrierReducer extends Reducer<Text, IntWritable, Text, IntWritable>{@Overrideprotected void reduce(Text token, Iterable<IntWritable> counts,Context context) throws IOException, InterruptedException {int sum = 0;for (IntWritable count : counts) {sum+= count.get();}context.write(token, new IntWritable(sum));}
}

5、利用idea maven打jar包

jar包名称为:beginner-1.0-SNAPSHOT.jar

6、上传到linux虚拟机

代码是在window系统中的idea编写完成,需要上传到Linux虚拟机。

7、运行MapReduce Driver,处理航班数据

hadoop jar beginner-1.0-SNAPSHOT.jar  /user/root/2008.csv /user/root/output/flightsCount

运行情况如下:

18/01/09 02:29:52 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
18/01/09 02:29:52 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
18/01/09 02:29:53 INFO input.FileInputFormat: Total input paths to process : 1
18/01/09 02:29:54 INFO mapreduce.JobSubmitter: number of splits:6
18/01/09 02:29:54 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1515491426576_0002
18/01/09 02:29:54 INFO impl.YarnClientImpl: Submitted application application_1515491426576_0002
18/01/09 02:29:55 INFO mapreduce.Job: The url to track the job: http://slave1:8088/proxy/application_1515491426576_0002/
18/01/09 02:29:55 INFO mapreduce.Job: Running job: job_1515491426576_0002
18/01/09 02:30:01 INFO mapreduce.Job: Job job_1515491426576_0002 running in uber mode : false
18/01/09 02:30:01 INFO mapreduce.Job:  map 0% reduce 0%
18/01/09 02:30:17 INFO mapreduce.Job:  map 39% reduce 0%
18/01/09 02:30:19 INFO mapreduce.Job:  map 52% reduce 0%
18/01/09 02:30:21 INFO mapreduce.Job:  map 86% reduce 0%
18/01/09 02:30:22 INFO mapreduce.Job:  map 100% reduce 0%
18/01/09 02:30:31 INFO mapreduce.Job:  map 100% reduce 100%
18/01/09 02:30:32 INFO mapreduce.Job: Job job_1515491426576_0002 completed successfully
18/01/09 02:30:32 INFO mapreduce.Job: Counters: 49File System CountersFILE: Number of bytes read=63087558FILE: Number of bytes written=127016400FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0HDFS: Number of bytes read=689434454HDFS: Number of bytes written=197HDFS: Number of read operations=21HDFS: Number of large read operations=0HDFS: Number of write operations=2Job Counters Launched map tasks=6Launched reduce tasks=1Data-local map tasks=6Total time spent by all maps in occupied slots (ms)=110470Total time spent by all reduces in occupied slots (ms)=7315Total time spent by all map tasks (ms)=110470Total time spent by all reduce tasks (ms)=7315Total vcore-milliseconds taken by all map tasks=110470Total vcore-milliseconds taken by all reduce tasks=7315Total megabyte-milliseconds taken by all map tasks=113121280Total megabyte-milliseconds taken by all reduce tasks=7490560Map-Reduce FrameworkMap input records=7009729Map output records=7009728Map output bytes=49068096Map output materialized bytes=63087588Input split bytes=630Combine input records=0Combine output records=0Reduce input groups=20Reduce shuffle bytes=63087588Reduce input records=7009728Reduce output records=20Spilled Records=14019456Shuffled Maps =6Failed Shuffles=0Merged Map outputs=6GC time elapsed (ms)=6818CPU time spent (ms)=38010Physical memory (bytes) snapshot=1807056896Virtual memory (bytes) snapshot=13627478016Total committed heap usage (bytes)=1370488832Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format Counters Bytes Read=689433824File Output Format Counters Bytes Written=197

8、查看航班数据

hadoop fs -cat /user/root/output/flightsCount/part-r-00000

结果如下:

9E  262208
AA  604885
AQ  7800
AS  151102
B6  196091
CO  298455
DL  451931
EV  280575
F9  95762
FL  261684
HA  61826
MQ  490693
NW  347652
OH  197607
OO  567159
UA  449515
US  453589
WN  1201754
XE  374510
YV  254930

参考资料:
1、《Hadoop For Dummies》

这篇关于hadoop入门--使用MapReduce统计每个航班班次的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101251

相关文章

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.