约瑟夫环问题(模板题,递推,树状数组,双端队列)

2024-08-23 22:04

本文主要是介绍约瑟夫环问题(模板题,递推,树状数组,双端队列),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 最后活的人(递推)
    • [LCR 187. 破冰游戏 ](https://leetcode.cn/problems/yuan-quan-zhong-zui-hou-sheng-xia-de-shu-zi-lcof/)
    • [P8671 约瑟夫环 - 洛谷 ](https://www.luogu.com.cn/problem/P8671)
  • 出局顺序(递推,树状数组)
    • 递推代码(编号从0开始)
    • L-koala的程序(双端队列)
    • 树状数组
  • 编号从1开始
    • [P8671 约瑟夫环 - 洛谷(最后活的人) ](https://www.luogu.com.cn/problem/P8671)
    • 出局顺序

约瑟夫问题,接下来分两类问题讲解:求 最后活下的人,出局顺序

其中皆有数学递推公式做法。 对于出局顺序还加了 双端队列,树状数组做法,时间复杂度更低。
最后还有编号从1开始,与从0开始的不同之处。

最后活的人(递推)

序列长度为10,target为3时

1 2 3 4 5 6 7 8 9 10

每死一个人,都会影响后面的报数,也就是确定了下一个要死的

第一个死的是3

第二个要死的是6变成的3

第三个死的,是9变成6又变成3

这就给我们提供了一个思路,可以通过记录每死一个人的状态,来归纳总结答案。

即,当活着的人数为 n u m num num时,要死的是谁!

12345678910num
893123456710
56378312349
23345367318

当长度为num-1,死的下标为f,由上表中3,6,9,可推得,该数字在长度为num时的下标F为

F=(f+target)%num

那最后留下的,只有它一个,下标自然就是1喽。不断向上递推不就得出,长度为num时,最后活着的人的下标了么。

请看下面例题:

LCR 187. 破冰游戏

注意!!!,这题编号是从0开始的,也就是最后留下的是0.

所以 是$return $ 0。

下面是从递归和迭代两个方面入手的代码:

代码

递归

class Solution {int f(int num,int target){if(num==1) return 0;int x=f(num-1,target);return (target+x)%num;}
public:int iceBreakingGame(int num, int target) {return f(num,target);}
};

迭代

class Solution {
public:int iceBreakingGame(int num, int target) {int f=0;for(int i=2;i!=num+1;i++)//长度为2到num{f=(target+f)%i;}return f;}
};

看完这个,可以那下面题练练手。这是编号从1开始的,能A出来,说明理解上述的推导。

(如果直接用上面代码输出+1,就没意义了)

P8671 约瑟夫环 - 洛谷

正确代码及解析,放最后了。

出局顺序(递推,树状数组)

最后留下的编号为1,我们从上述表格也可得知,每次出局的编号为(target%num),以10 3为例,出局时的编号为3

以9为例,它是第三个出局。

出局时编号返回3,利用上述递推公式,得出

第二局编号为 (3+3)%10=6

第一局编号为 (6+3)%10=9

这样我们就能得出第三局出局的是9

所以我们在上述代码中加一个循环,还有一个变量,控制每次递推次数,就可以得出每次出局的人了

同样的,我们先以编号从0开始为例,给出代码

递推代码(编号从0开始)

#include<bits/stdc++.h>
using namespace std;
//用递归实现约瑟夫环问题
int f(int N,int M,int i)
{if(i==1)//到达该数字出局时{return (M-1+N)%N;//因为从0开始,那么下标应该这样表示,且保证结果在0,N-1范围}return (f(N-1,M,i-1)+M)%N;
}int main()
{int num,target;cin>>num>>target;   for(int i=1;i<=num;i++)//第i个出局的递推i次cout<<f(num,target,i)<<" ";return 0;
} 

时间复杂度为O( n 2 n^2 n2.

L-koala的程序(双端队列)

数据很大,显然不能用上述方法

太傻啦,竟然没看出来

看有大佬用的双端队列(勉勉强强能过,不是最优解)

代码

#include<bits/stdc++.h>
using namespace std;
int main()
{int n,k,pos=0;cin>>n>>k;deque<int> q;for(int i=1;i<=n;i++)q.push_back(i);while(q.size()>1){pos+=k-1;//因为队列从0开始while(pos+1>q.size()) pos-=q.size();cout<<q[pos]<<' ';q.erase(q.begin()+pos);}
}

树状数组

树状数组是 O( N l o n g N NlongN NlongN)时间复杂度。

用树状数组来存放初始位置每个人的状态。也就是N个人,每个人初始为1。

当一个人死了,标记该位置-1。

通过加k对当期序列长度取模,得到下一个该死的人在新序列中的编号p,结合二分 找到在 树状数组前缀和为p的位置,这就是原序列中该死的人,标记为-1.

先看代码,后面还有解释…

代码

#include <bits/stdc++.h>
using namespace std;
const int N=3e5+7;
#define lowbit(x) ((x)&(-x))
int tree[N],n,m;
void update(int i,int x){while(i<=n) {tree[i]+=x;i+=lowbit(i);}
}
int query(int x)
{int ans=0;while(x>0){ans+=tree[x];x-=lowbit(x);}return ans;
}
int main() {cin>>n>>m;int p=1;//初始化保证后面操作,一会儿会说for(int i=1;i<=n;++i) update(i,1);  //或这tree[i]=lower(i);  int t=n;while(t>1){p=(p+m-1-1)%t+1;//每次都有一个数-1被删,只需找到p-=1就好了int l=1,r=n;while(l<r){int mid=l+r>>1;if(query(mid)>=p) r=mid;else l=mid+1;}cout<<l<<' ';update(l,-1);t--;}return 0;
}

易错疑难点

为什么t=n

update操作也是需要n的,直接用 n − − n-- n,会影响结果正确性
要对不断递减的t取模

为什么p初始化1,循环里p=(p+m-1-1)%t+1这样更新值

  1. (n-1)%m+1 这种-1+1取模,保证结果在【1,m】区间,符合编号

  2. 我们是通过前缀和来找到要删除的数,可是在删除上一个数时,会使前缀和-1。所以我们原本要找sum=p,变成了sum=p-1,该位置是要找的。 可对于第一次进循环,没有数删除时,不需-1,因而初始化为1.

  3. 也有代码初始就将 m − − m-- m ,这样就不需要 p − − p-- p

编号从1开始

n%m

所得结果区间[0,m-1],恰巧符合下标从0开始

(n-1)%m+1

区间**[1,m]**,这样取模解决的这个问题。

所以上述代码中,将取模处和返回值修改一下就得出答案。

P8671 约瑟夫环 - 洛谷(最后活的人)

#include<bits/stdc++.h>
using namespace std;
#define int long long
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int f(int num,int target)
{if(num==1) return 1;//只剩一个数编号为1int x=f(num-1,target);return (target+x-1)%num+1;//上面说的,-1 +1 取模
}
signed main()
{IOSint n,k;cin>>n>>k;cout<<f(n,k);
}

出局顺序

#include<bits/stdc++.h>
using namespace std;
#define int long long
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);int f(int num,int target,int i){if(i==1) return (target-1)%num+1;int x=f(num-1,target,i-1);return (target+x-1)%num+1;}
signed main()
{IOSint num,target;cin>>num>>target;for(int i=1;i<=num;i++)cout<<f(num,target,i)<<" ";
}

这篇关于约瑟夫环问题(模板题,递推,树状数组,双端队列)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100620

相关文章

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH