约瑟夫环问题(模板题,递推,树状数组,双端队列)

2024-08-23 22:04

本文主要是介绍约瑟夫环问题(模板题,递推,树状数组,双端队列),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 最后活的人(递推)
    • [LCR 187. 破冰游戏 ](https://leetcode.cn/problems/yuan-quan-zhong-zui-hou-sheng-xia-de-shu-zi-lcof/)
    • [P8671 约瑟夫环 - 洛谷 ](https://www.luogu.com.cn/problem/P8671)
  • 出局顺序(递推,树状数组)
    • 递推代码(编号从0开始)
    • L-koala的程序(双端队列)
    • 树状数组
  • 编号从1开始
    • [P8671 约瑟夫环 - 洛谷(最后活的人) ](https://www.luogu.com.cn/problem/P8671)
    • 出局顺序

约瑟夫问题,接下来分两类问题讲解:求 最后活下的人,出局顺序

其中皆有数学递推公式做法。 对于出局顺序还加了 双端队列,树状数组做法,时间复杂度更低。
最后还有编号从1开始,与从0开始的不同之处。

最后活的人(递推)

序列长度为10,target为3时

1 2 3 4 5 6 7 8 9 10

每死一个人,都会影响后面的报数,也就是确定了下一个要死的

第一个死的是3

第二个要死的是6变成的3

第三个死的,是9变成6又变成3

这就给我们提供了一个思路,可以通过记录每死一个人的状态,来归纳总结答案。

即,当活着的人数为 n u m num num时,要死的是谁!

12345678910num
893123456710
56378312349
23345367318

当长度为num-1,死的下标为f,由上表中3,6,9,可推得,该数字在长度为num时的下标F为

F=(f+target)%num

那最后留下的,只有它一个,下标自然就是1喽。不断向上递推不就得出,长度为num时,最后活着的人的下标了么。

请看下面例题:

LCR 187. 破冰游戏

注意!!!,这题编号是从0开始的,也就是最后留下的是0.

所以 是$return $ 0。

下面是从递归和迭代两个方面入手的代码:

代码

递归

class Solution {int f(int num,int target){if(num==1) return 0;int x=f(num-1,target);return (target+x)%num;}
public:int iceBreakingGame(int num, int target) {return f(num,target);}
};

迭代

class Solution {
public:int iceBreakingGame(int num, int target) {int f=0;for(int i=2;i!=num+1;i++)//长度为2到num{f=(target+f)%i;}return f;}
};

看完这个,可以那下面题练练手。这是编号从1开始的,能A出来,说明理解上述的推导。

(如果直接用上面代码输出+1,就没意义了)

P8671 约瑟夫环 - 洛谷

正确代码及解析,放最后了。

出局顺序(递推,树状数组)

最后留下的编号为1,我们从上述表格也可得知,每次出局的编号为(target%num),以10 3为例,出局时的编号为3

以9为例,它是第三个出局。

出局时编号返回3,利用上述递推公式,得出

第二局编号为 (3+3)%10=6

第一局编号为 (6+3)%10=9

这样我们就能得出第三局出局的是9

所以我们在上述代码中加一个循环,还有一个变量,控制每次递推次数,就可以得出每次出局的人了

同样的,我们先以编号从0开始为例,给出代码

递推代码(编号从0开始)

#include<bits/stdc++.h>
using namespace std;
//用递归实现约瑟夫环问题
int f(int N,int M,int i)
{if(i==1)//到达该数字出局时{return (M-1+N)%N;//因为从0开始,那么下标应该这样表示,且保证结果在0,N-1范围}return (f(N-1,M,i-1)+M)%N;
}int main()
{int num,target;cin>>num>>target;   for(int i=1;i<=num;i++)//第i个出局的递推i次cout<<f(num,target,i)<<" ";return 0;
} 

时间复杂度为O( n 2 n^2 n2.

L-koala的程序(双端队列)

数据很大,显然不能用上述方法

太傻啦,竟然没看出来

看有大佬用的双端队列(勉勉强强能过,不是最优解)

代码

#include<bits/stdc++.h>
using namespace std;
int main()
{int n,k,pos=0;cin>>n>>k;deque<int> q;for(int i=1;i<=n;i++)q.push_back(i);while(q.size()>1){pos+=k-1;//因为队列从0开始while(pos+1>q.size()) pos-=q.size();cout<<q[pos]<<' ';q.erase(q.begin()+pos);}
}

树状数组

树状数组是 O( N l o n g N NlongN NlongN)时间复杂度。

用树状数组来存放初始位置每个人的状态。也就是N个人,每个人初始为1。

当一个人死了,标记该位置-1。

通过加k对当期序列长度取模,得到下一个该死的人在新序列中的编号p,结合二分 找到在 树状数组前缀和为p的位置,这就是原序列中该死的人,标记为-1.

先看代码,后面还有解释…

代码

#include <bits/stdc++.h>
using namespace std;
const int N=3e5+7;
#define lowbit(x) ((x)&(-x))
int tree[N],n,m;
void update(int i,int x){while(i<=n) {tree[i]+=x;i+=lowbit(i);}
}
int query(int x)
{int ans=0;while(x>0){ans+=tree[x];x-=lowbit(x);}return ans;
}
int main() {cin>>n>>m;int p=1;//初始化保证后面操作,一会儿会说for(int i=1;i<=n;++i) update(i,1);  //或这tree[i]=lower(i);  int t=n;while(t>1){p=(p+m-1-1)%t+1;//每次都有一个数-1被删,只需找到p-=1就好了int l=1,r=n;while(l<r){int mid=l+r>>1;if(query(mid)>=p) r=mid;else l=mid+1;}cout<<l<<' ';update(l,-1);t--;}return 0;
}

易错疑难点

为什么t=n

update操作也是需要n的,直接用 n − − n-- n,会影响结果正确性
要对不断递减的t取模

为什么p初始化1,循环里p=(p+m-1-1)%t+1这样更新值

  1. (n-1)%m+1 这种-1+1取模,保证结果在【1,m】区间,符合编号

  2. 我们是通过前缀和来找到要删除的数,可是在删除上一个数时,会使前缀和-1。所以我们原本要找sum=p,变成了sum=p-1,该位置是要找的。 可对于第一次进循环,没有数删除时,不需-1,因而初始化为1.

  3. 也有代码初始就将 m − − m-- m ,这样就不需要 p − − p-- p

编号从1开始

n%m

所得结果区间[0,m-1],恰巧符合下标从0开始

(n-1)%m+1

区间**[1,m]**,这样取模解决的这个问题。

所以上述代码中,将取模处和返回值修改一下就得出答案。

P8671 约瑟夫环 - 洛谷(最后活的人)

#include<bits/stdc++.h>
using namespace std;
#define int long long
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int f(int num,int target)
{if(num==1) return 1;//只剩一个数编号为1int x=f(num-1,target);return (target+x-1)%num+1;//上面说的,-1 +1 取模
}
signed main()
{IOSint n,k;cin>>n>>k;cout<<f(n,k);
}

出局顺序

#include<bits/stdc++.h>
using namespace std;
#define int long long
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);int f(int num,int target,int i){if(i==1) return (target-1)%num+1;int x=f(num-1,target,i-1);return (target+x-1)%num+1;}
signed main()
{IOSint num,target;cin>>num>>target;for(int i=1;i<=num;i++)cout<<f(num,target,i)<<" ";
}

这篇关于约瑟夫环问题(模板题,递推,树状数组,双端队列)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100620

相关文章

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

C++原地删除有序数组重复项的N种方法

《C++原地删除有序数组重复项的N种方法》给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度,不要使用额外的数组空间,你必须在原地修改输入数组并在使用O(... 目录一、问题二、问题分析三、算法实现四、问题变体:最多保留两次五、分析和代码实现5.1、问题分析5.

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给