优化Kubernetes横向扩缩HPA

2024-08-23 20:58

本文主要是介绍优化Kubernetes横向扩缩HPA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pod水平自动扩缩(Horizontal Pod Autoscaler, 简称HPA)可以基于 CPU/MEM 利用率自动扩缩Deployment、StatefulSet 中的 Pod 数量,同时也可以基于其他应程序提供的自定义度量指标来执行自动扩缩。默认HPA可以满足一些简单场景,对于生产环境并不一定适合,本文主要分析HPA的不足与优化方式。

HPA Resource类型不足

默认HPA提供了Resource类型,通过CPU/MEM使用率指标(由metrics-server提供原始指标)来扩缩应用。

使用率计算方式

在Resource类型中,使用率计算是通过request而不是limit,源码如下:

// 获取Pod resource request
func calculatePodRequests(pods []*v1.Pod, resource v1.ResourceName) (map[string]int64, error) {requests := make(map[string]int64, len(pods))for _, pod := range pods {podSum := int64(0)for _, container := range pod.Spec.Containers {if containerRequest, ok := container.Resources.Requests[resource]; ok {podSum += containerRequest.MilliValue()} else {return nil, fmt.Errorf("missing request for %s", resource)}}requests[pod.Name] = podSum}return requests, nil
}
// 计算使用率
func GetResourceUtilizationRatio(metrics PodMetricsInfo, requests map[string]int64, targetUtilization int32) (utilizationRatio float64, currentUtilization int32, rawAverageValue int64, err error) {metricsTotal := int64(0)requestsTotal := int64(0)numEntries := 0for podName, metric := range metrics {request, hasRequest := requests[podName]if !hasRequest {// we check for missing requests elsewhere, so assuming missing requests == extraneous metricscontinue}metricsTotal += metric.ValuerequestsTotal += requestnumEntries++}currentUtilization = int32((metricsTotal * 100) / requestsTotal)return float64(currentUtilization) / float64(targetUtilization), currentUtilization, metricsTotal / int64(numEntries), nil
}

通常在Paas平台中会对资源进行超配,limit即用户请求资源,request即实际分配资源,如果按照request来计算使用率(会超过100%)是不符合预期的。相关issue见72811,目前还存在争论。可以修改源码,或者使用自定义指标来代替。

多容器Pod使用率问题

默认提供的Resource类型的HPA,通过上述方式计算资源使用率,核心方式如下:

metricsTotal = sum(pod.container.metricValue)
requestsTotal = sum(pod.container.Request)
currentUtilization = int32((metricsTotal * 100) / requestsTotal)

计算出所有container的资源使用量再比总的申请量,对于单容器Pod这没影响。但对于多容器Pod,比如Pod包含多个容器con1、con2(request都为1cpu),con1使用率10%,con2使用率100%,HPA目标使用率60%,按照目前方式得到使用率为55%不会进行扩容,但实际con2已经达到资源瓶颈,势必会影响服务质量。当前系统中,多容器Pod通常都是1个主容器与多个sidecar,依赖主容器的指标更合适点。

好在1.20版本中已经支持了ContainerResource可以配置基于某个容器的资源使用率来进行扩缩,如果是之前的版本建议使用自定义指标替换。

性能问题

单线程架构

默认的hpa-controller是单个Goroutine执行的,随着集群规模的增多,势必会成为性能瓶颈,目前默认hpa资源同步周期会15s,假设每个metric请求延时为100ms,当前架构只能支持150个HPA资源(保证在15s内同步一次)

func (a *HorizontalController) Run(stopCh <-chan struct{}) {// ...// start a single worker (we may wish to start more in the future)go wait.Until(a.worker, time.Second, stopCh)<-stopCh
}

可以通过调整worker数量来横向扩展,已提交PR。

调用链路

hpa controller中一次hpa资源同步,需要调用多次apiserver接口,主要链路如下

  1. 通过scaleForResourceMappings得到scale资源
  2. 调用computeReplicasForMetrics获取metrics value
  3. 调用Scales().Update更新计算出的副本数

尤其在获取metrics value时,需要先调用apiserver,apiserver调用metrics-server/custom-metrics-server,当集群内存在大量hpa时可能会对apiserver性能产生一定影响。

其他

对于自定义指标用户需要实现custom.metrics.k8s.ioexternal.metrics.k8s.io,目前已经有部分开源实现见custom-metrics-api。

另外,hpa核心的扩缩算法根据当前指标和期望指标来计算扩缩比例,并不适合所有场景,只使用线性增长的指标。

期望副本数 = ceil[当前副本数 * (当前指标 / 期望指标)]

watermarkpodautoscaler提供了更灵活的扩缩算法,比如平均值、水位线等,可以作为参考。

总结

Kubernetes提供原生的HPA只能满足一部分场景,如果要上生产环境,必须对其做一些优化,本文总结了当前HPA存在的不足,例如在性能、使用率计算方面,并提供了解决思路。

这篇关于优化Kubernetes横向扩缩HPA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100473

相关文章

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Kubernetes常用命令大全近期总结

《Kubernetes常用命令大全近期总结》Kubernetes是用于大规模部署和管理这些容器的开源软件-在希腊语中,这个词还有“舵手”或“飞行员”的意思,使用Kubernetes(有时被称为“... 目录前言Kubernetes 的工作原理为什么要使用 Kubernetes?Kubernetes常用命令总

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6