优化Kubernetes横向扩缩HPA

2024-08-23 20:58

本文主要是介绍优化Kubernetes横向扩缩HPA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pod水平自动扩缩(Horizontal Pod Autoscaler, 简称HPA)可以基于 CPU/MEM 利用率自动扩缩Deployment、StatefulSet 中的 Pod 数量,同时也可以基于其他应程序提供的自定义度量指标来执行自动扩缩。默认HPA可以满足一些简单场景,对于生产环境并不一定适合,本文主要分析HPA的不足与优化方式。

HPA Resource类型不足

默认HPA提供了Resource类型,通过CPU/MEM使用率指标(由metrics-server提供原始指标)来扩缩应用。

使用率计算方式

在Resource类型中,使用率计算是通过request而不是limit,源码如下:

// 获取Pod resource request
func calculatePodRequests(pods []*v1.Pod, resource v1.ResourceName) (map[string]int64, error) {requests := make(map[string]int64, len(pods))for _, pod := range pods {podSum := int64(0)for _, container := range pod.Spec.Containers {if containerRequest, ok := container.Resources.Requests[resource]; ok {podSum += containerRequest.MilliValue()} else {return nil, fmt.Errorf("missing request for %s", resource)}}requests[pod.Name] = podSum}return requests, nil
}
// 计算使用率
func GetResourceUtilizationRatio(metrics PodMetricsInfo, requests map[string]int64, targetUtilization int32) (utilizationRatio float64, currentUtilization int32, rawAverageValue int64, err error) {metricsTotal := int64(0)requestsTotal := int64(0)numEntries := 0for podName, metric := range metrics {request, hasRequest := requests[podName]if !hasRequest {// we check for missing requests elsewhere, so assuming missing requests == extraneous metricscontinue}metricsTotal += metric.ValuerequestsTotal += requestnumEntries++}currentUtilization = int32((metricsTotal * 100) / requestsTotal)return float64(currentUtilization) / float64(targetUtilization), currentUtilization, metricsTotal / int64(numEntries), nil
}

通常在Paas平台中会对资源进行超配,limit即用户请求资源,request即实际分配资源,如果按照request来计算使用率(会超过100%)是不符合预期的。相关issue见72811,目前还存在争论。可以修改源码,或者使用自定义指标来代替。

多容器Pod使用率问题

默认提供的Resource类型的HPA,通过上述方式计算资源使用率,核心方式如下:

metricsTotal = sum(pod.container.metricValue)
requestsTotal = sum(pod.container.Request)
currentUtilization = int32((metricsTotal * 100) / requestsTotal)

计算出所有container的资源使用量再比总的申请量,对于单容器Pod这没影响。但对于多容器Pod,比如Pod包含多个容器con1、con2(request都为1cpu),con1使用率10%,con2使用率100%,HPA目标使用率60%,按照目前方式得到使用率为55%不会进行扩容,但实际con2已经达到资源瓶颈,势必会影响服务质量。当前系统中,多容器Pod通常都是1个主容器与多个sidecar,依赖主容器的指标更合适点。

好在1.20版本中已经支持了ContainerResource可以配置基于某个容器的资源使用率来进行扩缩,如果是之前的版本建议使用自定义指标替换。

性能问题

单线程架构

默认的hpa-controller是单个Goroutine执行的,随着集群规模的增多,势必会成为性能瓶颈,目前默认hpa资源同步周期会15s,假设每个metric请求延时为100ms,当前架构只能支持150个HPA资源(保证在15s内同步一次)

func (a *HorizontalController) Run(stopCh <-chan struct{}) {// ...// start a single worker (we may wish to start more in the future)go wait.Until(a.worker, time.Second, stopCh)<-stopCh
}

可以通过调整worker数量来横向扩展,已提交PR。

调用链路

hpa controller中一次hpa资源同步,需要调用多次apiserver接口,主要链路如下

  1. 通过scaleForResourceMappings得到scale资源
  2. 调用computeReplicasForMetrics获取metrics value
  3. 调用Scales().Update更新计算出的副本数

尤其在获取metrics value时,需要先调用apiserver,apiserver调用metrics-server/custom-metrics-server,当集群内存在大量hpa时可能会对apiserver性能产生一定影响。

其他

对于自定义指标用户需要实现custom.metrics.k8s.ioexternal.metrics.k8s.io,目前已经有部分开源实现见custom-metrics-api。

另外,hpa核心的扩缩算法根据当前指标和期望指标来计算扩缩比例,并不适合所有场景,只使用线性增长的指标。

期望副本数 = ceil[当前副本数 * (当前指标 / 期望指标)]

watermarkpodautoscaler提供了更灵活的扩缩算法,比如平均值、水位线等,可以作为参考。

总结

Kubernetes提供原生的HPA只能满足一部分场景,如果要上生产环境,必须对其做一些优化,本文总结了当前HPA存在的不足,例如在性能、使用率计算方面,并提供了解决思路。

这篇关于优化Kubernetes横向扩缩HPA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100473

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

什么是Kubernetes PodSecurityPolicy?

@TOC 💖The Begin💖点点关注,收藏不迷路💖 1、什么是PodSecurityPolicy? PodSecurityPolicy(PSP)是Kubernetes中的一个安全特性,用于在Pod创建前进行安全策略检查,限制Pod的资源使用、运行权限等,提升集群安全性。 2、为什么需要它? 默认情况下,Kubernetes允许用户自由创建Pod,可能带来安全风险。

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动

容器编排平台Kubernetes简介

目录 什么是K8s 为什么需要K8s 什么是容器(Contianer) K8s能做什么? K8s的架构原理  控制平面(Control plane)         kube-apiserver         etcd         kube-scheduler         kube-controller-manager         cloud-controlle