新手教学系列——利用 Loguru 对日志进行分类处理

2024-08-23 20:52

本文主要是介绍新手教学系列——利用 Loguru 对日志进行分类处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在现代应用程序中,日志记录是确保系统健康运行的关键因素之一。尤其在复杂的系统中,我们可能需要将日志按不同的需求进行分类和处理。Loguru 作为一款功能强大的日志库,提供了灵活的日志记录方式。今天,我们将探讨如何使用 Loguru 的过滤功能来分类处理系统日志和关键节点日志,以满足特定需求。

需求场景

假设我们有两个主要的日志需求: 1. 标准系统日志:记录系统的常规信息,如运行状态和普通操作。 2. 关键节点日志:在系统的关键节点记录 Elasticsearch 相关的日志,以便进行详细分析和追踪。

配置 Loguru 记录系统日志和 Elasticsearch 日志

在使用 Loguru 之前,我们需要先进行基础配置,确保日志记录的准确性和有效性。下面的配置代码展示了如何设置不同的日志处理方式:

# 移除默认的日志处理器
logger.remove()# 配置标准系统日志处理器
logger.add(sys.stderr,  # 将日志输出到标准错误流level=env.str('LOGGER_LEVEL', 'INFO'),  # 日志级别,通过环境变量设置,默认为 INFOformat=env.str('LOGURU_FORMAT', DEFAULT_LOG_FORMAT),  # 日志格式,通过环境变量设置,使用默认格式backtrace=env.bool('LOGURU_BACKTRACE', True),  # 是否启用堆栈回溯diagnose=env.bool('LOGURU_DIAGNOSE', True),  # 是否启用诊断信息filter=lambda record: record["extra"].get("write_tag") is None,  # 过滤器:只记录没有 write_tag 的日志
)# 配置 Elasticsearch 日志处理器
logger.add(os.path.join(LOGS_PATH, 'task.log'),  # 将日志输出到指定的文件level=env.str('ES_LOG_LEVEL', 'INFO'),  # Elasticsearch 日志级别,通过环境变量设置,默认为 INFOrotation=env.str('TASK_LOG_ROTATION', '500 MB'),  # 日志文件轮换策略,达到 500 MB 后轮换format='{message}',  # Elasticsearch 日志格式,只记录消息部分filter=lambda record: record["extra"].get("write_tag") == 'elasticsearch',  # 过滤器:只记录 write_tag 为 'elasticsearch' 的日志
)# 配置异常处理选项
logger.opt(exception=True)

如何使用 Loguru 进行日志记录

在实际使用中,我们可以通过绑定 write_tag 来区分日志的目标。例如,若我们要记录 Elasticsearch 相关日志,可以这样进行配置:

# 绑定 write_tag,并记录 Elasticsearch 日志
logger.bind(write_tag="elasticsearch").info(orjson.dumps(es_log).decode('utf-8'))

便利性

Loguru 的设计旨在提供一种简单且无感的日志记录方式。通过直接从 loguru 模块导入 logger 对象,我们可以很方便地在代码中记录各种日志信息,而无需复杂的配置。通过 write_tag,我们能够标记日志的目标,使得日志的处理更加高效和精准。

总结

使用 Loguru 进行日志分类处理不仅能够提高系统的可维护性,还能帮助我们在关键节点进行有效的监控和分析。通过合理配置日志处理器和过滤器,我们可以确保系统日志和关键节点日志的准确记录,从而更好地理解和优化系统的运行状态。

关注【程序员的开发手册】,让您少走弯路,掌握更多开发技巧和实践经验。

这篇关于新手教学系列——利用 Loguru 对日志进行分类处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100468

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则