【算法】希尔排序、计数排序、桶排序、基数排序

2024-08-23 19:12

本文主要是介绍【算法】希尔排序、计数排序、桶排序、基数排序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 希尔排序
2 计数排序
3 桶排序
4 基数排序

1 希尔排序

"""
希尔排序(Shell Sort)是一种插入排序算法的改进版本,得名于其发明者Donald Shell。
它通过比较一定间隔的元素来进行排序,以减少数据移动的次数,从而提高排序效率。
希尔排序的核心思想是:将待排序的数组按照一定的间隔分组,对每组元素进行插入排序,
然后逐渐缩小间隔,直到间隔为1时对整个数组进行一次插入排序。
这样可以保证在最后一次排序时,数据基本接近有序,从而减少了插入排序的比较和移动次数。希尔排序的步骤:
1 选择间隔序列:选择一个间隔序列(例如:n/2, n/4, ..., 1,其中n是数组的长度),并按照间隔将数组元素分组。
2 分组插入排序:对每个间隔的分组进行插入排序。因为间隔较大,分组内元素较少,插入排序相对快速。
3 缩小间隔:将间隔缩小,重复步骤2。
4 最终排序:当间隔缩小到1时,整个数组的元素几乎有序,进行最后一次插入排序。希尔排序的时间复杂度:
希尔排序的时间复杂度取决于间隔序列的选择,最优情况下时间复杂度可达到 O(nlogn),但最坏情况下可能达到 O(n2)。
通常,使用Hibbard间隔序列或Sedgewick间隔序列等更优化的间隔可以提高效率。
"""def insert_sort_gap(li: list, gap: int):for i in range(gap, len(li)):  # i表示摸到的牌的下标tmp = li[i]  # 摸到的牌j = i - gap  # j指的是手里的牌的下标while j >= 0 and li[j] > tmp:li[j + gap] = li[j]j -= gapli[j + gap] = tmpdef shell_sort(li: list):d = len(li) // 2while d >= 1:insert_sort_gap(li, d)d //= 2li = list(range(10))
import randomrandom.shuffle(li)
print("打散后的列表:", li)
shell_sort(li)
print("希尔排序后的列表:", li)运行结果:
打散后的列表: [7, 4, 5, 6, 0, 3, 2, 9, 1, 8]
希尔排序后的列表: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

2 计数排序

"""
计数排序(Counting Sort)是一种线性时间的非比较排序算法,适用于对一定范围内的整数进行排序。
它通过计数数组来统计每个元素的出现次数,并根据计数来确定元素在排序后数组中的位置。
计数排序特别适用于范围不大的整数集合,且在需要稳定排序的情况下表现良好。计数排序的基本步骤:
1 确定范围:找出待排序数组中的最大值和最小值,确定计数数组的大小。
2 初始化计数数组:创建一个大小为“最大值减最小值加1”的计数数组,并将其初始化为0。
3 计数元素:遍历原数组,将每个元素出现的次数记录在计数数组相应的位置。
4 累加计数:将计数数组中的计数值进行累加,从而得到每个元素在排序后数组中的正确位置。
5 生成排序数组:根据计数数组中的信息,将元素放入最终的排序数组中。计数排序的特点:
1 时间复杂度:计数排序的时间复杂度为 O(n+k),其中 n 是待排序数组的大小,k 是计数数组的大小(即范围)。
2 空间复杂度:需要额外的 O(k) 空间来存储计数数组,因此在元素范围较大时空间复杂度较高。
3 稳定性:计数排序是稳定的排序算法,即在排序后相等元素的相对顺序保持不变。计数排序的应用场景:
计数排序非常适合用来排序整数集合,尤其当数值范围相对较小(例如考试成绩、年龄等)的情况下。
在处理某些特定的计数问题时,计数排序也可以扩展用于统计出现频率等。"""
import time
import random
import copydef cal_time(func):def wrapper(*args, **kwargs):t1 = time.time()result = func(*args, **kwargs)t2 = time.time()print("%s running time: %s secs." % (func.__name__, t2 - t1))return resultreturn wrapper@cal_time
def count_sort(li: list, max_count=100):# 创建一个计数数组,大小为 max_count + 1,初始值全部为0# 这个数组用来记录每个值在原列表中出现的次数count = [0 for _ in range(max_count + 1)]# 遍历原列表li,对每个元素进行计数# 具体做法是将对应元素的值作为索引,在计数数组中增加其出现次数for val in li:count[val] += 1# 清空原列表li,因为我们将按排序顺序重新填充这个列表li.clear()# 枚举计数数组,index是数组的索引,对应原列表中的值;val是该值出现的次数for index, val in enumerate(count):# 如果某个值出现了多次(val>0),就将这个值添加回原列表中val次for _ in range(val):li.append(index)# li = [random.randint(1, 100) for _ in range(1000)]
# print(li)
# count_sort(li)
# print(li)@cal_time
def sys_sort(li: list):li.sort()# 比较时间复杂度
li = [random.randint(1, 100) for _ in range(10000000)]
li1 = copy.deepcopy(li)
li2 = copy.deepcopy(li)
count_sort(li1)
sys_sort(li2)

3 桶排序

"""
桶排序(Bucket Sort)是一种基于分布的排序算法,适用于均匀分布的数列。
它通过将元素分配到不同的桶(子区间)中,再对每个桶内的元素进行排序,最后将所有桶中的元素合并得到有序序列。
桶排序通常用于处理数据分布均匀且取值范围有限的场景。桶排序的基本步骤:
1 创建桶:根据待排序数组的元素值范围,创建一定数量的桶。
2 分配元素到桶:将每个元素放入对应的桶中。通常使用简单的映射函数,如将元素值除以桶的区间长度,决定该元素进入哪个桶。
3 对每个桶内部进行排序:由于每个桶内的元素数量通常较少,常用插入排序、快速排序等对桶内元素排序。
4 合并桶中的元素:将各个桶中的元素按顺序合并,得到最终的有序数组。桶排序的特点:
1 时间复杂度:在理想情况下,桶排序的时间复杂度为O(n+k), n是待排序的元素数量,k是桶的数量。最坏情况下时间复杂度为 O(n2k)(当所有元素都分配到同一个桶时)。
2 空间复杂度:空间复杂度主要由桶的数量和元素数量决定,通常为 O(nk)。
3 稳定性:桶排序是稳定的排序算法。桶排序的应用场景:桶排序特别适用于对均匀分布的数据进行排序。常见的应用包括排序浮点数、考试成绩分段统计等。它在处理数据量大且分布较均匀的情况下具有较好的性能。
"""
import randomdef bucket_sort(li: list, n=100, max_num=10000) -> list:"""桶排序代码演示:param li: 传入的列表:param n: 桶的数量:param max_num: 表示待排序数组中可能出现的最大值:return: 排序好的列表"""# 创建n个空桶,每个桶是一个空列表,用来存放分配到该桶的元素buckets = [[] for _ in range(n)]# 遍历待排序的列表li,将每个元素放入相应的桶中for val in li:# 计算当前元素val应放入的桶的索引i# val // (max_num // n) 计算出元素应该放入的桶位置# 使用min确保索引不会超过最后一个桶的索引i = min(val // (max_num // n), n - 1)# 将元素val放入计算出的桶buckets[i]中buckets[i].append(val)# 保持桶内的顺序,通过直接插入排序的方式,插入时保持桶内元素有序# 对新插入的元素进行插入排序,确保桶内元素有序。这个循环从新加入的元素位置开始,向前检查并保持桶内元素顺序。for j in range(len(buckets[i]) - 1, 0, -1):# 如果当前元素小于前一个元素,则交换位置if buckets[i][j] < buckets[i][j - 1]:buckets[i][j], buckets[i][j - 1] = buckets[i][j - 1], buckets[i][j]else:# 如果当前元素不小于前一个元素,说明已经有序,结束内循环break# 将所有桶中的元素按顺序合并到一个列表中sorted_li = []for buc in buckets:sorted_li.extend(buc)  # 将每个桶中的元素按顺序加入到 sorted_li 中,最终得到排序后的列表# 返回排序后的列表return sorted_lili = [random.randint(0, 100) for _ in range(1000000)]
print(li)
li = bucket_sort(li)
print(li)

4 基数排序

"""
基数排序(Radix Sort)是一种非比较型的整数排序算法,它将整数按位数分割,然后按每个位数依次进行排序。
基数排序的核心思想是利用桶排序或计数排序来对数字的每一位(个位、十位、百位等)进行排序,从最低位开始,逐步构建出最终的有序数组。基数排序的步骤:
1 确定最大位数:找到数组中最大数的位数,决定排序的轮数。
2 按位排序:从最低位(个位)开始,对每一位使用稳定的排序算法(如计数排序)进行排序。
3 逐位递进:对下一位(十位、百位等)重复上述过程,直到最高位排序完成。基数排序的特点:
1 时间复杂度:假设待排序的 n 个整数的最大位数为 d,每个位上的数的范围为 k,则基数排序的时间复杂度为 O(d(n+k))。
2 空间复杂度:需要额外的空间来存放临时数组和桶,空间复杂度为 O(n+k)。
3 稳定性:基数排序是稳定的排序算法。基数排序的实现:基数排序有两种常见的实现方式:LSD(Least Significant Digit) 和 MSD(Most Significant Digit)。1 LSD 从最低位开始排序。2 MSD 从最高位开始排序。
"""
import randomdef radix_sort(li: list):# 找到列表中的最大数,以确定排序时需要处理的最大位数max_num = max(li)# it 代表当前处理的是哪一位,从个位(it=0)开始it = 0# 当 10 的 it 次方小于等于 max_num 时,继续循环处理下一位while 10 ** it <= max_num:# 创建 10 个空桶,每个桶是一个列表,用来存放对应数字的元素buckets = [[] for _ in range(10)]# 遍历原始列表中的每个元素for val in li:# 计算当前位(it 位)的数字,如个位、十位、百位等digit = (val // 10 ** it) % 10# 根据当前位的数字,将元素放入对应的桶中buckets[digit].append(val)# 清空原始列表,以便将桶中的数据重新写回li.clear()# 依次将所有桶中的数据按顺序重新合并回原始列表for buc in buckets:li.extend(buc)# 增加 it,以便处理下一位(从个位到十位,十位到百位)it += 1li = list(range(10))
random.shuffle(li)
print(li)
radix_sort(li)
print(li)

这篇关于【算法】希尔排序、计数排序、桶排序、基数排序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100261

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

hdu 1285(拓扑排序)

题意: 给各个队间的胜负关系,让排名次,名词相同按从小到大排。 解析: 拓扑排序是应用于有向无回路图(Direct Acyclic Graph,简称DAG)上的一种排序方式,对一个有向无回路图进行拓扑排序后,所有的顶点形成一个序列,对所有边(u,v),满足u 在v 的前面。该序列说明了顶点表示的事件或状态发生的整体顺序。比较经典的是在工程活动上,某些工程完成后,另一些工程才能继续,此时

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int