python 实现dijkstra银行家算法

2024-08-23 17:20

本文主要是介绍python 实现dijkstra银行家算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

dijkstra银行家算法介绍

Dijkstra的银行家算法是一种用于避免死锁的资源分配算法,由著名计算机科学家艾兹赫尔·戴克斯特拉(Edsger Dijkstra)在1965年提出。该算法通过模拟银行家在向客户贷款时的决策过程,确保系统在资源分配过程中始终处于安全状态。

银行家算法的基本思想

银行家算法的基本思想是通过判断系统是否处于安全状态来决定是否分配资源给进程。系统维护几个关键的数据结构,包括:

可用资源(Available):表示系统中每种资源的可用数量。
最大需求(Max):表示每个进程对每种资源的最大需求量。
已分配资源(Allocation):表示每个进程已经分配到的资源数量。
还需资源(Need):表示每个进程还需要的资源数量,通常通过Max - Allocation计算得出。
算法的执行步骤
初始化:系统初始化这些数据结构,并设置正确的初始值。
进程请求资源:当一个进程请求资源时,系统检查该请求是否小于等于系统当前可用的资源数量。
安全性检查:如果满足进程的资源请求,系统试探性地分配资源给进程,并进行安全性检查。这个检查通过模拟分配资源并判断是否存在一种资源分配序列,使得所有进程都能顺利完成任务。
安全状态:如果存在这样的序列,则系统认为当前状态是安全的,可以分配资源给进程。
不安全状态:如果不存在这样的序列,则系统认为当前状态是不安全的,不会分配资源给进程,以避免死锁的发生。
资源分配:如果系统处于安全状态,则分配资源给进程;否则,进程需要等待或请求被拒绝。
资源释放:当进程完成任务后,释放已分配的资源,使其可供其他进程使用。
优点与限制

优点:

能够有效地避免死锁,保证系统的安全性。

限制:

需要预先知道每个进程的最大资源需求。
资源的分配必须是静态的,不能动态变化。
注意事项

银行家算法主要用于解决进程死锁问题,而不是特定的线程死锁问题。尽管其思想可以在多线程环境中应用,但其主要用途还是在操作系统的层面上管理资源分配,从而避免进程之间的死锁。

dijkstra银行家算法python实现样例

下面是用Python实现Dijkstra银行家算法的示例代码:

import numpy as npdef banker_algorithm(available, allocation, need):num_processes = len(allocation)num_resources = len(available)# 初始化工作向量和分配矩阵work = available.copy()finish = np.zeros(num_processes, dtype=bool)safe_sequence = []while np.any(finish == False):# 查找一个满足条件的进程found = Falsefor i in range(num_processes):if not finish[i] and np.all(need[i] <= work):work += allocation[i]finish[i] = Truesafe_sequence.append(i)found = Truebreak# 没有找到满足条件的进程,即系统不是安全的if not found:return Nonereturn safe_sequencedef main():available = np.array([3, 3, 2])  # 可用资源向量allocation = np.array([[0, 1, 0], [2, 0, 0], [3, 0, 2], [2, 1, 1], [0, 0, 2]])  # 分配矩阵max_need = np.array([[7, 5, 3], [3, 2, 2], [9, 0, 2], [2, 2, 2], [4, 3, 3]])  # 最大需求矩阵need = max_need - allocation  # 计算需求矩阵safe_sequence = banker_algorithm(available, allocation, need)if safe_sequence:print("系统是安全的,安全序列为:")print(safe_sequence)else:print("系统是不安全的")if __name__ == "__main__":main()

运行上述代码将输出系统是否安全以及安全序列。请根据实际情况修改availableallocationmax_need数组来进行测试。

这篇关于python 实现dijkstra银行家算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100021

相关文章

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文