个人笔记--python画图(一维,二维,三维)

2024-08-23 16:12

本文主要是介绍个人笔记--python画图(一维,二维,三维),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 一维

1. plot

import numpy as np
import matplotlib.pyplot as plt# linspace(): 创建等间距的数值序列
x = np.linspace(0, 2 * np.pi, 100)u = np.sin(x)# 绘制一维图形
plt.figure()
plt.plot(x, u)
plt.title('Plot of sin(x)')
plt.xlabel('x')
plt.ylabel('sin(x)')
plt.show()

在这里插入图片描述

2. 二维

2.1 imshow

import numpy as np
import matplotlib.pyplot as pltx = np.linspace(0, 2 * np.pi, 100)
y = np.linspace(0, 2 * np.pi, 100)
# 创建网格点
X, Y = np.meshgrid(x, y)U = np.sin(X) * np.cos(Y)# 使用imshow绘制热图
plt.figure()
plt.imshow(U, extent=(0, 2 * np.pi, 0, 2 * np.pi), origin='lower', cmap='viridis')
plt.colorbar()
plt.title('Heatmap of sin(x) * cos(y)')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在这里插入图片描述

2.2 contour

import numpy as np
import matplotlib.pyplot as pltx = np.linspace(0, 2 * np.pi, 100)
y = np.linspace(0, 2 * np.pi, 100)
X, Y = np.meshgrid(x, y)U = np.sin(X) * np.cos(Y)# 使用contour绘制等高线图
plt.figure()
plt.contour(X, Y, U, levels=20, cmap='viridis')
plt.colorbar()
plt.title('Contour of sin(x) * cos(y)')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在这里插入图片描述

2.3 pcolor

import numpy as np
import matplotlib.pyplot as pltx = np.linspace(0, 2 * np.pi, 100)
y = np.linspace(0, 2 * np.pi, 100)
X, Y = np.meshgrid(x, y)U = np.sin(X) * np.cos(Y)# 使用pcolor绘制伪彩色图
plt.figure()
plt.pcolor(X, Y, U, cmap='viridis')
plt.colorbar()
plt.title('Pcolor of sin(x) * cos(y)')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在这里插入图片描述

2.4 scatter

import numpy as np
import matplotlib.pyplot as plt# 生成数据
x = np.linspace(0, 2 * np.pi, 100)
y = np.linspace(0, 2 * np.pi, 100)
X, Y = np.meshgrid(x, y)
U = np.sin(X) * np.cos(Y)# 绘制散点图
plt.scatter(X, Y, c=U, cmap='viridis')# 添加标题和标签
plt.title('Scatter plot of U = sin(X) * cos(Y)')
plt.xlabel('X')
plt.ylabel('Y')# 显示图表
plt.colorbar(label='U value')
plt.show()# 上面的X,Y,U维度都是(100,100),
# 下面的x_star, y_star, v0_train维度是(100*100,1)即(10000,1)
# 只要维度一样就可以
# plt.scatter(x_star, y_star, c=v0_train, cmap='viridis')
# plt.colorbar()
# plt.xlabel('X')
# plt.ylabel('Y')
# plt.title('v_0_train')
# plt.show()

在这里插入图片描述

2.5 plot_surface

import numpy as np
import matplotlib.pyplot as plt
# from mpl_toolkits.mplot3d import Axes3D# 生成x和y
x = np.linspace(0, 2 * np.pi, 100)
y = np.linspace(0, 2 * np.pi, 100)
X, Y = np.meshgrid(x, y)# 计算u
U = np.sin(X) * np.cos(Y)# 使用plot_surface绘制三维表面图
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, U, cmap='viridis')
ax.set_title('Surface plot of sin(x) * cos(y)')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('u')
plt.show()

在这里插入图片描述

2.6 contour3D

import numpy as np
import matplotlib.pyplot as plt
# from mpl_toolkits.mplot3d import Axes3D# 生成x和y
x = np.linspace(0, 2 * np.pi, 100)
y = np.linspace(0, 2 * np.pi, 100)
X, Y = np.meshgrid(x, y)# 计算u
U = np.sin(X) * np.cos(Y)# 使用contour3D绘制三维等高线图
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.contour3D(X, Y, U, 50, cmap='viridis')
ax.set_title('3D Contour of sin(x) * cos(y)')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('u')
plt.show()

在这里插入图片描述

3. 三维

3.1 plot_surface

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 生成x, y, z
x = np.linspace(0, 2 * np.pi, 50)
y = np.linspace(0, 2 * np.pi, 50)
z = np.linspace(0, 2 * np.pi, 50)
X, Y, Z = np.meshgrid(x, y, z)U = np.sin(X) * np.cos(Y) * np.sin(Z)# 固定z,绘制三维表面图
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X[:,:,25], Y[:,:,25], U[:,:,25], cmap='viridis')
ax.set_title('Surface plot of sin(x) * cos(y) * sin(z) at z=pi')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('u')
plt.show()

在这里插入图片描述

3.2 contour3D

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 生成x, y, z
x = np.linspace(0, 2 * np.pi, 50)
y = np.linspace(0, 2 * np.pi, 50)
z = np.linspace(0, 2 * np.pi, 50)
X, Y, Z = np.meshgrid(x, y, z)U = np.sin(X) * np.cos(Y) * np.sin(Z)# 固定z,绘制三维等高线图
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.contour3D(X[:,:,25], Y[:,:,25], U[:,:,25], 50, cmap='viridis')
ax.set_title('3D Contour of sin(x) * cos(y) * sin(z) at z=pi')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('u')
plt.show()

在这里插入图片描述

4. 存储图像

4.1 一般情况

import matplotlib.pyplot as plt
import numpy as np# 创建一些示例数据
x = np.linspace(0, 10, 100)
y = np.sin(x)# 创建一个折线图
plt.plot(x, y)# 使用plt.savefig()保存图像
plt.savefig('sine.png')# 显示图像
plt.show()

4.2 一次存多个图

globals()[f"pic_{time_block}_{AM_count}"] = plt.figure(1, figsize=(15, 15))
predict_np_u = model.predict_U(x_test_current).cpu().detach().numpy()
predict_np_v = model.predict_V(x_test_current).cpu().detach().numpy()
predict_np_p = model.predict_P(x_test_current).cpu().detach().numpy()u_pred = np.reshape(predict_np_u, (x.shape[0], y.shape[0], t_current.shape[0]), order='F')
v_pred = np.reshape(predict_np_v, (x.shape[0], y.shape[0], t_current.shape[0]), order='F')
p_pred = np.reshape(predict_np_p, (x.shape[0], y.shape[0], t_current.shape[0]), order='F')# Adjust subplot parameters to avoid overlap
plt.subplots_adjust(wspace=0.4, hspace=0.4)  # Increase the width and height spacesfor i in range(len(t_1)):# Predictionplt.subplot(3, 3, 1 + 3 * i)plt.pcolor(x_1, y_1, u_pred[:, :, t_pos1[i]], cmap='jet')plt.colorbar()plt.xlabel(r'$x$', fontsize=18)plt.ylabel(r'$y$', fontsize=18)plt.title('Predicted $\hat u(x,y,t)$, t=' + str(t_1[i]), fontsize=15)plt.subplot(3, 3, 2 + 3 * i)plt.pcolor(x_1, y_1, v_pred[:, :, t_pos1[i]], cmap='jet')plt.colorbar()plt.xlabel(r'$x$', fontsize=18)plt.ylabel(r'$y$', fontsize=18)plt.title('Predicted $\hat u(x,y,t)$, t=' + str(t_1[i]), fontsize=15)plt.subplot(3, 3, 3 + 3 * i)plt.pcolor(x_1, y_1, p_pred[:, :, t_pos1[i]], cmap='jet')plt.colorbar()plt.xlabel(r'$x$', fontsize=18)plt.ylabel(r'$y$', fontsize=18)plt.title('Predicted $\hat u(x,y,t)$, t=' + str(t_1[i]), fontsize=15)plt.close()
globals()[f"pic_{time_block}_{AM_count}"].savefig("figures_count/Sol_" + params_name + str(time_block) + "_" + str(AM_count) + ".png", dpi=500, bbox_inches='tight')

用上globals()去命名

这篇关于个人笔记--python画图(一维,二维,三维)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099869

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

poj2576(二维背包)

题意:n个人分成两组,两组人数只差小于1 , 并且体重只差最小 对于人数要求恰好装满,对于体重要求尽量多,一开始没做出来,看了下解题,按照自己的感觉写,然后a了 状态转移方程:dp[i][j] = max(dp[i][j],dp[i-1][j-c[k]]+c[k]);其中i表示人数,j表示背包容量,k表示输入的体重的 代码如下: #include<iostream>#include<

hdu2159(二维背包)

这是我的第一道二维背包题,没想到自己一下子就A了,但是代码写的比较乱,下面的代码是我有重新修改的 状态转移:dp[i][j] = max(dp[i][j], dp[i-1][j-c[z]]+v[z]); 其中dp[i][j]表示,打了i个怪物,消耗j的耐力值,所得到的最大经验值 代码如下: #include<iostream>#include<algorithm>#include<

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该