算法力扣刷题记录 八十九【332.重新安排行程】

2024-08-23 14:28

本文主要是介绍算法力扣刷题记录 八十九【332.重新安排行程】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

回溯章节第13篇。

记录 八十九【332.重新安排行程】


一、题目阅读

给你一份航线列表 tickets ,其中 tickets[i] = [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。

所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。

例如,行程 [“JFK”, “LGA”] 与 [“JFK”, “LGB”] 相比就更小,排序更靠前。
假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次只能用一次

示例 1:
在这里插入图片描述

输入:tickets = [["MUC","LHR"],["JFK","MUC"],["SFO","SJC"],["LHR","SFO"]]
输出:["JFK","MUC","LHR","SFO","SJC"]

示例 2:
在这里插入图片描述

输入:tickets = [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
输出:["JFK","ATL","JFK","SFO","ATL","SFO"]
解释:另一种有效的行程是 ["JFK","SFO","ATL","JFK","ATL","SFO"] ,但是它字典排序更大更靠后。

提示:

1 <= tickets.length <= 300
tickets[i].length == 2
fromi.length == 3
toi.length == 3
from i 和 to i 由大写英文字母组成
from i != to i

二、尝试实现

2.1分析题目,确定方法

  1. 理解题目:
  • 给的参数是tickets 数组,其中每一个元素代表一张机票,该机票表现形式是[fromi, toi] ,表示出发地和终点;如下图:
    在这里插入图片描述
  • 题目要求把tickets都串联起来,从JFK的机票开始,形成一条航线。比如示例一:
    在这里插入图片描述
  1. 理解题目含义之后:
  • 明显看出来这不是贪心或者动态规划类的题目。没有办法从前一个状态推到下一个状态。
  • tickets集合可以将节点构成一个有向图,使用图论中的搜索方式,找到一条路径如何?应该可以。但是第一步需要先把tickets变成图的表示方法:邻接表。
  • 根据记录 八十二【图论理论基础及深度优先搜索算法】和记录 八十五【图论的广度优先搜索理论基础】,广度优先搜索应用在两点之间最短路径查找多,本题目应该选用深度优先搜索,因为是找一条路径,当找不通时,回溯更改方向继续搜索。如果搜到路径(并且排序最小),应该返回。
  • 那么:本题方法——深搜+回溯
  • 用到回溯算法:参考为回溯新开了一个章节。那么相当于从tickets集合中顺序选择机票,串联起来,找一个排列。(另一个角度,所以不需要把tickets转换成邻接表)

2.2 回溯思路【排列角度】

  1. 题目只返回一条行程,按字典排序最小的行程。那么,先把tickets进行从小到大排序。第一个问题:如何解决排序
  • 现有的sort函数没有办法对tickets[i]:vector< string> 形式排序,所以要自己实现比较函数。如下:

    1. static修饰:如果调用类的非静态成员函数要创建对象。为了力扣的核心代码形式,所以加static2. 先比较from出发地。如果from一样,比较end终点。从小到大排列。
    static bool compare(const vector<string>& ticket_a,const vector<string>& ticket_b){if(ticket_a[0] == ticket_b[0]){return ticket_a[1] < ticket_b[1];}else{return ticket_a[0] < ticket_b[0];}}
    
  • 排序之后,找到的第一条路径肯定是字典排序后最小的。 只搜集第一个叶子结点。

  1. 递归搜索:回溯的过程。
  • 确定递归的返回值:用一个成员vector< string> temp;记录结果。
  • 确定递归的参数
    • vector< bool>& used:表明这个tickets[i]有没有被使用过。题目说所有的tickets[i]都要被使用且使用1次,所以used作用在此;
    • string from :代表下一个机票的出发地 。上一个ticket的降落地 = 下一个ticket的出发地;
    • int& usenum:代表使用过的tickets总数。控制终止条件。usenum == tickets.size()时终止;
    • const vector<vector< string>>& tickets :输入的tickets数组。
  • 确定递归的终止条件
    • 如果从temp.size来判断终止不太方便,所以用一个变量usenum表示现在使用了多少个ticket,如果usenum == tickets.size()代表使用了所有的tickets,那么应该return。
  • 确定递归的逻辑
    • 在主函数中先sort tickets数组,结果相当于求一个排列,所以每次for循环从0开始到tickets.size()
    • 重复使用处理:if(used[i]) continue;如果标记该tickets[i]使用过,那么continue;
    • 地点不连续处理:if(tickets[i][0] != from) continue;如果出发地不是上一层传递的from,那么continue;
    • 找到的第一个没使用过且from出发地符合的tickets[i]一定是最小路径的一员。(提醒排过序了)
    • tickets处理:把该tickets[i]的目的地放入temp;used = true;usenum++;
    • 递到下一层:from赋值上一步的tickets[i]的目的地(toi);
    • 回溯:把temp放入的目的地pop;used = false;usenum - -;
  • 细节处理:本题只返回一条排序最小的路径,所以只搜集一个叶子结点
    • 设置一个全局的标志:bool ok = false;
    • 在终止条件中,ok = true;
    • for循环中,回溯之前先判断if(ok) ,那么break;
  1. 该回溯实现的树形结构,以示例一为例:
    在这里插入图片描述
    在这里插入图片描述

2.3 代码实现【回溯算法+排列角度】

class Solution {
public:vector<string> temp;//中间结果bool ok= false;static bool compare(const vector<string>& ticket_a,const vector<string>& ticket_b){if(ticket_a[0] == ticket_b[0]){return ticket_a[1] < ticket_b[1];}else{return ticket_a[0] < ticket_b[0];}}void backtracking(vector<bool>& used,string from,int& usenum,const vector<vector<string>>& tickets){//终止条件,是否所有机票都被使用过if(usenum == tickets.size()){ok = true;return;}for(int i = 0;i < tickets.size();i++){if(tickets[i][0] != from) continue;if(used[i]) continue;temp.push_back(tickets[i][1]);//把目的地放入used[i] = true;//该机票使用过usenum++;backtracking(used,tickets[i][1],usenum,tickets);//递到下一层if(ok) break;//只返回最小的行程,所以另一终止条件.只搜集一个叶子节点。temp.pop_back();used[i] = false;usenum--;}}vector<string> findItinerary(vector<vector<string>>& tickets) {sort(tickets.begin(),tickets.end(),compare);//把所有机票从小到大排列temp.clear();temp.push_back("JFK");vector<bool> used(tickets.size(),false);int usenum = 0;backtracking(used,"JFK",usenum,tickets);return temp;}
};

问题:提交后超时,无法通过

  • 分析时间复杂度:
    • 首先sort,排序方式快排,时间复杂度O(nlogn);
    • 在进入递归:递归次数最差情况需要找到排列树形结构中的最后一个叶子节点。所以时间复杂度是O(n!);
    • 那么整体的时间复杂度:O(n* n! * logn);

三、参考学习

【332.重新安排行程】参考学习链接

如何解决超时的问题?

3.1 学习思路

  1. 深搜离不开回溯。这道题就是深度优先搜索,深搜中必须用到回溯。
  2. 问题一:如何避开死循环?以参考给的示例:如果处理不好会在“JFK”和“NRT”之间来回跳跃。
  • 尝试实现没有出现这个问题:使用used数组记录是否使用过,且使用1次,并不会出现这种情况。进入死循环,是因为把某个机票重复使用多次,或者有重复的机票
    在这里插入图片描述
  1. 问题二:处理映射关系。一个出发地可能对应有多个目的地。
    解决:在unordered_map中使得出发机场没有重复的,且无需排序,底层实现是哈希表;map不允许重复,有序,底层实现是红黑树(二叉搜索树);

unordered_map<string, map<string, int>> targets:unordered_map<出发机场, map<到达机场, 航班次数>> targets
航班次数用来解决:tickets中有重复的机票。如果“航班次数”大于零,说明目的地还可以到达,如果“航班次数”等于零说明目的地无法到达。
map<到达机场, 航班次数>完成2.3代码中的排序操作。

  1. 递归回溯实现
    • 递归的参数:
      • unordered_map<string, map<string, int>> targets:在函数之前先解决映射关系;
      • vector < string>& result:存放路径结果;相当于2.3代码的temp;
      • int ticketNum。终止条件使用,表示航班总数(终止条件会用上)= tickets数组的总数。
    • 递归的返回值:bool
      • 2.2中的细节处理:只搜集一个叶子节点,个人用bool ok做了标记;在for循环中,回溯之前先判断if(ok) break;
      • 参考使用:返回值bool
    • 递归终止条件:if (result.size() == ticketNum + 1) { return true; }
    • 递归函数的逻辑:
      • 遍历result[result.size()-1](相当于2.3代码中的from参数的作用)所映射的map;
      • 先判断**“航班次数”** 是否大于0,还有无机会到达该目的地;
      • 处理航班:如果可以,把**“到达机场”** 放入result中,再“航班次数”++;
      • 递到下一层,根据下一层的返回值,是否直接return true相当于2.3代码中的if(ok) break;
      • 回溯操作:把**“到达机场”** 从result中pop,再“航班次数”- -;

3.2 代码实现【回溯+航班映射】

class Solution {
public:unordered_map<string,map<string,int>> targets;bool backtracking(int ticketSum,vector<string>& result){if(result.size() == ticketSum+1){return true;}for(pair<const string,int>& target:targets[result[result.size()-1]]){if(target.second > 0){result.push_back(target.first);target.second--;if(backtracking(ticketSum,result)) return true;result.pop_back();target.second++;}}return false;}vector<string> findItinerary(vector<vector<string>>& tickets) {targets.clear();for(int i = 0;i < tickets.size();i++){targets[tickets[i][0]][tickets[i][1]]++;}vector<string> result;result.push_back("JFK");backtracking(tickets.size(),result);return result;}
};

注意点:

  1. 主函数中result要先放入起点“JFK”;

  2. 在使用rangefor遍历from出发地映射的map时,target必须是引用,因为target.second做了修改,需要传递到下一层;

  3. pair<const string,int>类型必须加const,因为target必须是引用,就必须在 string 前面加上 const,因为map中的key 是不可修改的。或者直接auto让编译器自动识别类型

    for(auto& target:targets[result[result.size()-1]])
    

3.3 分析时间复杂度

对比2.3和3.2 两个代码实现:深搜和回溯的思路一致,但是容器的使用和处理上不一样导致一个出现超时的用例,一个没有超时风险。

  1. 完成映射的时间复杂度是O(n);
  2. 进入到递归中。使用unordered_map找到from映射的map,底层是哈希表,查找O(1)常数级;再考虑递归次数:从排列角度看结果是获得一个排列,搜索顶多O(n!);
  3. 那么3.2的时间复杂度是O(n * n!);
  4. 因为使用映射容器,使得在查找from出发地时,用unordered_map减少了时间;递归中的for循环时间减少,并且排序时间也减少,两个地方使得3.2的代码实现比2.3更好

总结

在这里插入图片描述
(欢迎指正,转载标明出处)

这篇关于算法力扣刷题记录 八十九【332.重新安排行程】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099641

相关文章

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步