机器学习-SVD分解

2024-08-23 13:38
文章标签 学习 机器 分解 svd

本文主要是介绍机器学习-SVD分解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ref:https://www.cnblogs.com/lzllovesyl/p/5243370.html

本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统。

1.SVD详解

SVD(singular value decomposition),翻译成中文就是奇异值分解。SVD的用处有很多,比如:LSA(隐性语义分析)、推荐系统、特征压缩(或称数据降维)。SVD可以理解为:将一个比较复杂的矩阵用更小更简单的3个子矩阵的相乘来表示,这3个小矩阵描述了大矩阵重要的特性。

 

1.1奇异值分解的几何意义(因公式输入比较麻烦所以采取截图的方式)

2.SVD应用于推荐系统

数据集中行代表用户user,列代表物品item,其中的值代表用户对物品的打分。基于SVD的优势在于:用户的评分数据是稀疏矩阵,可以用SVD将原始数据映射到低维空间中,然后计算物品item之间的相似度,可以节省计算资源。

整体思路:先找到用户没有评分的物品,然后再经过SVD“压缩”后的低维空间中,计算未评分物品与其他物品的相似性,得到一个预测打分,再对这些物品的评分从高到低进行排序,返回前N个物品推荐给用户。

 

具体代码如下,主要分为5部分:

第1部分:加载测试数据集;

第2部分:定义三种计算相似度的方法;

第3部分:通过计算奇异值平方和的百分比来确定将数据降到多少维才合适,返回需要降到的维度;

第4部分:在已经降维的数据中,基于SVD对用户未打分的物品进行评分预测,返回未打分物品的预测评分值;

第5部分:产生前N个评分值高的物品,返回物品编号以及预测评分值。

 

优势在于:用户的评分数据是稀疏矩阵,可以用SVD将数据映射到低维空间,然后计算低维空间中的item之间的相似度,对用户未评分的item进行评分预测,最后将预测评分高的item推荐给用户。

复制代码

#coding=utf-8
from numpy import *
from numpy import linalg as la'''加载测试数据集'''
def loadExData():return mat([[0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5],[0, 0, 0, 3, 0, 4, 0, 0, 0, 0, 3],[0, 0, 0, 0, 4, 0, 0, 1, 0, 4, 0],[3, 3, 4, 0, 0, 0, 0, 2, 2, 0, 0],[5, 4, 5, 0, 0, 0, 0, 5, 5, 0, 0],[0, 0, 0, 0, 5, 0, 1, 0, 0, 5, 0],[4, 3, 4, 0, 0, 0, 0, 5, 5, 0, 1],[0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 4],[0, 0, 0, 2, 0, 2, 5, 0, 0, 1, 2],[0, 0, 0, 0, 5, 0, 0, 0, 0, 4, 0],[1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0]])'''以下是三种计算相似度的算法,分别是欧式距离、皮尔逊相关系数和余弦相似度,
注意三种计算方式的参数inA和inB都是列向量'''
def ecludSim(inA,inB):return 1.0/(1.0+la.norm(inA-inB))  #范数的计算方法linalg.norm(),这里的1/(1+距离)表示将相似度的范围放在0与1之间def pearsSim(inA,inB):if len(inA)<3: return 1.0return 0.5+0.5*corrcoef(inA,inB,rowvar=0)[0][1]  #皮尔逊相关系数的计算方法corrcoef(),参数rowvar=0表示对列求相似度,这里的0.5+0.5*corrcoef()是为了将范围归一化放到0和1之间def cosSim(inA,inB):num=float(inA.T*inB)denom=la.norm(inA)*la.norm(inB)return 0.5+0.5*(num/denom) #将相似度归一到0与1之间'''按照前k个奇异值的平方和占总奇异值的平方和的百分比percentage来确定k的值,
后续计算SVD时需要将原始矩阵转换到k维空间'''
def sigmaPct(sigma,percentage):sigma2=sigma**2 #对sigma求平方sumsgm2=sum(sigma2) #求所有奇异值sigma的平方和sumsgm3=0 #sumsgm3是前k个奇异值的平方和k=0for i in sigma:sumsgm3+=i**2k+=1if sumsgm3>=sumsgm2*percentage:return k'''函数svdEst()的参数包含:数据矩阵、用户编号、物品编号和奇异值占比的阈值,
数据矩阵的行对应用户,列对应物品,函数的作用是基于item的相似性对用户未评过分的物品进行预测评分'''
def svdEst(dataMat,user,simMeas,item,percentage):n=shape(dataMat)[1]simTotal=0.0;ratSimTotal=0.0u,sigma,vt=la.svd(dataMat)k=sigmaPct(sigma,percentage) #确定了k的值sigmaK=mat(eye(k)*sigma[:k])  #构建对角矩阵xformedItems=dataMat.T*u[:,:k]*sigmaK.I  #根据k的值将原始数据转换到k维空间(低维),xformedItems表示物品(item)在k维空间转换后的值for j in range(n):userRating=dataMat[user,j]if userRating==0 or j==item:continuesimilarity=simMeas(xformedItems[item,:].T,xformedItems[j,:].T) #计算物品item与物品j之间的相似度simTotal+=similarity #对所有相似度求和ratSimTotal+=similarity*userRating #用"物品item和物品j的相似度"乘以"用户对物品j的评分",并求和if simTotal==0:return 0else:return ratSimTotal/simTotal #得到对物品item的预测评分'''函数recommend()产生预测评分最高的N个推荐结果,默认返回5个;
参数包括:数据矩阵、用户编号、相似度衡量的方法、预测评分的方法、以及奇异值占比的阈值;
数据矩阵的行对应用户,列对应物品,函数的作用是基于item的相似性对用户未评过分的物品进行预测评分;
相似度衡量的方法默认用余弦相似度'''
def recommend(dataMat,user,N=5,simMeas=cosSim,estMethod=svdEst,percentage=0.9):unratedItems=nonzero(dataMat[user,:].A==0)[1]  #建立一个用户未评分item的列表if len(unratedItems)==0:return 'you rated everything' #如果都已经评过分,则退出itemScores=[]for item in unratedItems:  #对于每个未评分的item,都计算其预测评分estimatedScore=estMethod(dataMat,user,simMeas,item,percentage)itemScores.append((item,estimatedScore))itemScores=sorted(itemScores,key=lambda x:x[1],reverse=True)#按照item的得分进行从大到小排序return itemScores[:N]  #返回前N大评分值的item名,及其预测评分值

复制代码

将文件命名为svd2.py,在python提示符下输入:
>>>import svd2
>>>testdata=svd2.loadExData()
>>>svd2.recommend(testdata,1,N=3,percentage=0.8)#对编号为1的用户推荐评分较高的3件商品

 

Reference:

1.Peter Harrington,《机器学习实战》,人民邮电出版社,2013

2.http://www.ams.org/samplings/feature-column/fcarc-svd (讲解SVD非常好的一篇文章,对于理解SVD非常有帮助,本文中SVD的几何意义就是参考这篇)

3. http://blog.csdn.net/xiahouzuoxin/article/details/41118351 (讲解SVD与特征值分解区别的一篇文章)

这篇关于机器学习-SVD分解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099535

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个