Direct9学习之--------------------------地形

2024-08-23 11:48

本文主要是介绍Direct9学习之--------------------------地形,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一. 地形的作用:

  

          地形,不言而喻是用来描绘游戏中高山 盆地 平原等地貌,用于确定对象在游戏世界的空间高度。


二. 地形基本原理:

       地形的实现是用地形网格(N行M列矩形网格)和高度图实现,地形网格用于绘制地表,高度图信息则用来表示地形高度。通过高度图的不同高度使地形形成高山盆地等。(高度图中保存了地形高度信息)


       地形网格主要作用是模拟地表,其构成是N行M列的顶点形成的N*M个长方行网格,我们暂时定义每个小长方形网格为整个地形的一个地形块.


              


高度图则保存了网格中么个顶点的高度信息,用于模拟高山盆地等高度变化


             


三. 地形基本实现方式及代码:


     实现步骤:

        1. 初始化地形网格或者地形顶点缓冲及地形纹理
        2. 加载高度图获取地形高度信息或者自定义高度信息

3. 绘制地形


具体相关代码:

a. 初始化地形网格数据(此处是已顶点缓冲形式创建当然也可以直接加载MESH更加方便)

注: 此处仅仅是初始化地形网格数据根据地形长宽创建地形的顶点缓冲数据

struct TerrainVertices
{
VECTOR3 vPos;
//VECTOR3 vNoraml;
VECTOR2 vTex;
};
#define D3DFVF_TERRAINVERTEX (D3DFVF_XYZ /*| D3DFVF_NORMAL*/| D3DFVF_TEX1)

HRESULT hr = pDevice->CreateVertexBuffer( nVertexCount * sizeof(TerrainVertices),
D3DUSAGE_WRITEONLY, D3DFVF_TERRAINVERTEX,
D3DPOOL_MANAGED, &m_pVertexBuf, NULL );


if ( FAILED( hr ) )
{
return false;
}


TerrainVertices* pVertices;
if( FAILED( m_pVertexBuf->Lock( 0, 0, (void**)&pVertices, 0 ) ) )
{
Release();
return false;
}


int  fLongCellSpacing = (int)m_fLongth / ( m_nLongCount - 1 );
int  fWidthCellSpacing = (int)m_fWidth / ( m_nWidthCount - 1 );
int startX = (int)- m_fLongth / 2;
int startZ =  (int)m_fWidth / 2;


// coordinates to end generating vertices at
int endX =  (int)m_fLongth / 2;
int endZ = (int)- m_fWidth / 2;


float uCoordIncrementSize = 1.0f / (float)m_nLongCount;
float vCoordIncrementSize = 1.0f / (float)m_nWidthCount;


//初始化网格顶点数据
int i = 0;
for(int z = startZ; z >= endZ; z -= fWidthCellSpacing)
{
int j = 0;
for(int x = startX; x <= endX; x += fLongCellSpacing)
{
// compute the correct index into the vertex buffer and heightmap
// based on where we are in the nested loop.
int index = i * m_nLongCount + j;
float y = GetHeight( float(x), float(z) );
pVertices[index].vPos = VECTOR3( (float)x, y, (float)z );
pVertices[index].vTex = VECTOR2( (float)j * uCoordIncrementSize, (float)i * vCoordIncrementSize );


j++; // next column
}
i++; // next row
}


m_pVertexBuf->Unlock();


b. 加载高度图或者计算高度信息也就是GetHeight函数(代码提供了两种方式)

注: 此处才是地形高度图的主要之所在,GetHeight函数中未被注释部分是自己YY计算地形高度就表现而言没有问题,但用的采取更多的是用高度图标识地形高度,(即被注释掉部分代码)。其基本原理是加载一个高度图纹理,并且读取出高度图中颜色信息数据,根据这些数据对应到地形中某点的高度。例如高度图中第一行第一列颜色值则对应地形网格中第一行第一列顶点高度值。为此对于地形上任意一点的高度可以通过其最近顶点高度线性比例求得。(例如:要求(x,z)点高度 应先求得(x,z)在地形中哪个地形块,根据地形快四个顶点高度及(x,z)位置用线性插值的方式可以求出(x,z)点高度信息)


// 根据点X Z计算高度
float Terrain::GetHeight( float fX, float fZ )
{
float y = 0.0f;


y += 7.0f * cosf( 0.051f*fX + 0.0f ) * sinf( 0.055f*fX + 0.0f );
y += 7.0f * cosf( 0.053f*fZ + 0.0f ) * sinf( 0.057f*fZ + 0.0f );
y += 1.0f * cosf( 0.101f*fX + 0.0f ) * sinf( 0.105f*fX + 0.0f );
y += 1.0f * cosf( 0.103f*fZ + 0.0f ) * sinf( 0.107f*fZ + 0.0f );
y += 1.0f * cosf( 0.251f*fX + 0.0f ) * sinf( 0.255f*fX + 0.0f );
y += 1.0f * cosf( 0.253f*fZ + 0.0f ) * sinf( 0.257f*fZ + 0.0f );
return y;
/**
// 若没有高度图则默认高度为0
if ( 0 == m_pHeightTex )
{
return 0.0f;
}


float fLongthStart = - m_fLongth / 2.0f * m_nLongCount;
float fWidthStart = m_fWidth / 2.0f;


// 定位改坐标点所在地图中网格位置
float fLongth = m_nLongCount * ( fX - fWidthStart ) / m_fLongth;
float fWidth = m_nWidthCount * ( 1 - ( fZ + fWidthStart ) / m_fWidth );


// 判断当前所在点受上半部分还是下半部分三角形影响
UINT nWidth = (int)fWidth;
UINT nLongth = (int)fLongth;


if ( nLongth < 0 || nLongth >= m_nHeighLongth || nWidth < 0 || nWidth >= m_nHeighWidth )
{
return 0.0f;
}


// 定义三角形三个顶点高度
float fFirst = 0.0f;
float fScened = 0.0f;
float fThird = 0.0f;
if ( fWidth - float(nWidth) > 0.5 )
{
fFirst = m_fHeighList[ nWidth*m_nHeighLongth + nLongth ];
fScened = m_fHeighList[ nWidth*m_nHeighLongth + nLongth + 1 ];
fThird = m_fHeighList[ (nWidth + 1)*m_nHeighLongth + nLongth + 1 ];
}
else
{
fFirst = m_fHeighList[ nWidth*m_nHeighLongth + nLongth ];
fScened = m_fHeighList[ (nWidth + 1)*m_nHeighLongth + nLongth + 1 ];
fThird = m_fHeighList[ nWidth*m_nHeighLongth + nLongth + 1 ];
}


float fHeight = 0.0f;
float fLongPer = fLongth - nLongth;
float fWidthPer = fWidth - nWidth;


fHeight = ( fFirst * fLongPer + fScened * ( 1 - fLongPer ) + fFirst * fWidthPer + fThird * ( 1- fWidthPer ) ) / 2.0f; 
return fHeight;
*/
}

c. 绘制的地形

当然绘制的方式很简单即绘制顶点缓冲区中顶点(如果用MESH做则直接绘制MESH)在此不再赘述。


四. 效果展示:


模拟山地地形



模拟大海


五. 其他:


地形不只单单包含山地盆地 配合合理的贴图 再加上UV动画或者顶点动画技术也可以模拟海洋等。

这篇关于Direct9学习之--------------------------地形的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099295

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件