0x5f3759df这个快速开方中的常数的数学依据和原理

2024-08-23 11:32

本文主要是介绍0x5f3759df这个快速开方中的常数的数学依据和原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

Quake-III Arena (雷神之锤3)是90年代的经典游戏之一。

 

该系列的游戏不但画面和内容不错,而且即使计算机配置低,也能极其流畅地运行。这要归功于它3D引擎的开发者约翰-卡马克(John Carmack)。事实上早在90年代初DOS时代,只要能在PC上搞个小动画都能让人惊叹一番的时候,John Carmack就推出了石破天惊的Castle Wolfstein, 然后再接再励,doom, doomII, Quake...每次都把3-D技术推到极致。他的3D引擎代码资极度高效,几乎是在压榨PC机的每条运算指令。当初MS的Direct3D也得听取他的意见,修改了不少API。


最近,QUAKE的开发商ID SOFTWARE遵守GPL协议,公开了QUAKE-III的原代码,让世人有幸目睹Carmack传奇的3D引擎的原码。


我们知道,越底层的函数,调用越频繁。3D引擎归根到底还是数学运算。

那么找到最底层的数学运算函数(game/code/q_math.c),必然是精心编写的。里面有很多有趣的函数,很多都令人惊奇,估计我们几年时间都学不完。


在/code/game/q_math.c里发现了这样一段代码。

它的作用是将一个数开平方并取倒,经测试这段代码比(float)(1.0/sqrt(x))快4倍:

[cpp]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. float Q_rsqrt( float number )  
  2. {  
  3.     long i;  
  4.     float x2, y;  
  5.     const float threehalfs = 1.5F;  
  6.   
  7.     x2 = number * 0.5F;  
  8.     y  = number;  
  9.     i  = * ( long * ) &y;                       // evil floating point bit level hacking  
  10.     i  = 0x5f3759df - ( i >> 1 );               // what the fuck?  
  11.     y  = * ( float * ) &i;  
  12.     y  = y * ( threehalfs - ( x2 * y * y ) );   // 1st iteration  
  13. //  y  = y * ( threehalfs - ( x2 * y * y ) );   // 2nd iteration, this can be removed  
  14.   
  15. #ifndef Q3_VM  
  16. #ifdef __linux__  
  17.     assert( !isnan(y) ); // bk010122 - FPE?  
  18. #endif  
  19. #endif  
  20.     return y;  
  21. }  


函数返回1/sqrt(x),这个函数在图像处理中比sqrt(x)更有用。

注意到这个函数只用了一次叠代!(其实就是根本没用叠代,直接运算)。编译,实验,这个函数不仅工作的很好,而且比标准的sqrt()函数快4倍!要知道,编译器自带的函数,可是经过严格仔细的汇编优化的啊!


这个简洁的函数,最核心,也是最让人费解的,就是标注了“what the fuck?”的一句:i = 0x5f3759df - ( i >> 1 );


再加上y = y * ( threehalfs - ( x2 * y * y ) );

两句话就完成了开方运算!而且注意到,核心那句是定点移位运算,速度极快!特别在很多没有乘法指令的RISC结构CPU上,这样做是极其高效的。


算法的原理其实不复杂,就是牛顿迭代法,用x-f(x)/f'(x)来不断的逼近f(x)=a的根。

简单来说比如求平方根,f(x)=x^2=a ,f'(x)= 2*x,f(x)/f'(x)=x/2,把f(x)代入x-f(x)/f'(x)后有(x+a/x)/2,现在
我们选a=5,选一个猜测值比如2,那么我们可以这么算

 

5/2 = 2.5;

(2.5+2)/2 = 2.25;

5/2.25 = xxx;

(2.25+xxx)/2 = xxxx

...


这样反复迭代下去,结果必定收敛于sqrt(5),没错,一般的求平方根都是这么算的,但是卡马克(quake3作者)真正牛B的地
方是他选择了一个神秘的常数0x5f3759df 来计算那个猜测值,就是我们加注释的那一行,那一行算出的值非常接近1/sqrt(n),这样我们只需要2次牛顿迭代就可以达到我们所需要的精度.好吧 如果这个还不算NB,接着看:



普渡大学的数学家Chris Lomont看了以后觉得有趣,决定要研究一下卡马克弄出来的这个猜测值有什么奥秘。Lomont也是个
牛人,在精心研究之后从理论上也推导出一个最佳猜测值,和卡马克的数字非常接近, 0x5f37642f。卡马克真牛,他是外星人吗?


传奇并没有在这里结束。Lomont计算出结果以后非常满意,于是拿自己计算出的起始值和卡马克的神秘数字做比赛,看看谁的
数字能够更快更精确的求得平方根。结果是卡马克赢了... 谁也不知道卡马克是怎么找到这个数字的。


最后Lomont怒了,采用暴力方法一个数字一个数字试过来,终于找到一个比卡马克数字要好上那么一丁点的数字,虽然实际上
这两个数字所产生的结果非常近似,这个暴力得出的数字是0x5f375a86。


Lomont为此写下一篇论文,"Fast Inverse Square Root"。

最后,给出最精简的1/sqrt()函数:

[cpp]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. float InvSqrt(float x)  
  2. {  
  3.     float xhalf = 0.5f * x;  
  4.     int i = *(int *)&x;  
  5.     i = 0x5f3759df - (i>>1);  
  6.     x = *(float *)&i;  
  7.     x = x * (1.5f - xhalf * x * x);  
  8.     return x;  
  9. }  

同时:


单精度的浮点数结构是这样:
那么现在,每个正浮点数 y 可以用尾数和指数的形式写成  2^e(1+m),其中 m 是尾数部分,取值范围是  [0, 1);e 是指数部分,一个整数。每个浮点数所对应的「整数形式」则可以用 EL+M表示,其中 L 是指数部分需要的位移次数(用 2 的幂表示),E 和 M 是指数部分和小数部分的整数版本。两者之间的关系是
\left\{ \begin{array}{ll}E  =  e + B \\M  =  mL\end{array} \right.
对单精度浮点而言, L=2^{23},B=127

考虑对数  \log_2 y=e+\log_2(1+m),由于 m\in\left[0, 1\right)\log_2(1+m)\in\left[0,1\right),取近似 \log_2(1+m)\approx m+\delta,可以算出整体「偏差」最小的 \delta=0.0430357 ,此时两者基本相当。因此我们可以说 

\log_2 y\approx e+m+\delta……………… (1)

那么,对于 y 的整数形式 Y 而言,展开并带代入 (1) 有:
Y & = & EL+M\\&= &L(e+B+m) \\& \approx & L(\log_2 y + B - \delta)


\log_2 y\approx {Y \over L}-(B-\delta)………………(2)

那么对于  y'={1 \over \sqrt{y}}来说, \log_2{y'}\approx -{1\over 2}\log_2 y,代入 (2) 得:
{Y' \over L}-(B-\delta)={1 \over 2}\left[(B-\delta)-{Y\over L}\right]
解得
Y'={3 \over 2}L(B-\delta)-{1 \over 2}Y
这个就是代码
i  = 0x5F3759DF - ( i >> 1 );
的秘密所在。0x5F3759DF 的具体取值是根据 δ 变的,至于卡马克为啥用 0x5F3759DF 而不是其他相近的值,估计是做实验测的吧……

同时:

假设原浮点数为0EM,

E为8位指数部分,M为23位尾数部分。

位操作的主要目的是为了让新的浮点数的e = -(e0)/2

我们知道E = e0+127

而我们想让位操作后的E'=-e0/2+127

右移一位可以得到:

E_s = E/2 = e0/2 + 127/2

如果我们用190去减E_s, 就可以得到

E_1 = 190-E_s=190-e0/2-63=-e0/2+127

而190正是这个魔法数的第31-23位。


因此这个魔法数帮助我们得到了正确的新浮点数的指数部分。小数部分则比较复杂,因为在原指数部分为奇数的情况下右移一位会无端端给尾数增加1/2,且相减后尾数可能会借用指数部分导致指数变小,因此通过调整尾数来修正。如需详细了解可参考这篇paper: lomont.org/Math/Papers/


需要指出现在的Intel CPU已经提供快速rsqrt指令,所以无需自己去实现这个算法。


这篇关于0x5f3759df这个快速开方中的常数的数学依据和原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099252

相关文章

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和