POJ 1459 ZOJ 1734 Power Network (网络最大流)

2024-08-23 11:18

本文主要是介绍POJ 1459 ZOJ 1734 Power Network (网络最大流),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://poj.org/problem?id=1459

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1734

Power Network
Time Limit: 2000MS Memory Limit: 32768K
Total Submissions: 22674 Accepted: 11880

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= p max(u) of power, may consume an amount 0 <= c(u) <= min(s(u),c max(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= l max(u,v) of power delivered by u to v. Let Con=Σ uc(u) be the power consumed in the net. The problem is to compute the maximum value of Con. 

An example is in figure 1. The label x/y of power station u shows that p(u)=x and p max(u)=y. The label x/y of consumer u shows that c(u)=x and c max(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and l max(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6. 

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of l max(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of p max(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of c max(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.

Source

Southeastern Europe 2003


题意:

一共有n个点,其中np个发电站,nc个用户,剩余的是中转站,有m条电缆(有向),电缆上有容量限制,发电站有发电上限,用户有耗电上限,求电网中最大消耗。

分析:

显然是网络最大流,发电站是源点,用户是汇点,建立超级源点与超级汇点,超级源点与发电站连一条有向边,容量为该发电站的发电上限,用户与超级汇点连一条有向边,容量为该用户的耗电上限。


这题我分别用EK算法和Dinic算法实现,发现在本题中Dinic算法的效率比EK算法高了近20倍!而在POJ 2112中,Dinic算法也比EK算法快了7倍多!Dinic简直就是神器啊,以后都用他了。

比较两种算法,EK算法是一次BFS找一条增广路;Dinic是一次BFS建立分层图,在该分层图上多次DFS找出多条增广路,以此减少BFS的次数,从而获得更高的效率。


EK算法实现:

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<ctime>
#include<cctype>
#include<cmath>
#include<string>
#include<cstring>
#include<stack>
#include<queue>
#include<list>
#include<vector>
#include<map>
#include<set>
#define sqr(x) ((x)*(x))
#define LL long long
#define itn int
#define INF 0x3f3f3f3f
#define PI 3.1415926535897932384626
#define eps 1e-10
#define maxm 23456
#define maxn 107using namespace std;int fir[maxn];
int u[maxm],v[maxm],cap[maxm],flow[maxm],nex[maxm];
int e_max;
int p[maxn],q[maxn],d[maxn];void add_edge(int _u,int _v,int _w)
{int e;e=e_max++;u[e]=_u;v[e]=_v;cap[e]=_w;nex[e]=fir[u[e]];fir[u[e]]=e;e=e_max++;u[e]=_v;v[e]=_u;cap[e]=0;nex[e]=fir[u[e]];fir[u[e]]=e;
}int max_flow(int s,int t)
{memset(flow,0,sizeof flow);int total_flow=0;for (;;){memset(d,0,sizeof d);d[s]=INF;int f=0,r=0;q[0]=s;while (f<=r){int _u=q[f++];for (int e=fir[_u];~e;e=nex[e]){if (!d[v[e]] && cap[e]>flow[e]){q[++r]=v[e];p[v[e]]=e;d[v[e]]=min(d[u[e]],cap[e]-flow[e]);}}}if (d[t]==0) break;for (int e=p[t];;e=p[u[e]]){flow[e]+=d[t];flow[e^1]-=d[t];if (u[e]==s) break;}total_flow+=d[t];}return total_flow;
}int main()
{#ifndef ONLINE_JUDGEfreopen("/home/fcbruce/文档/code/t","r",stdin);#endif // ONLINE_JUDGEint n,np,nc,m,_u,_v,_w;while (~scanf("%d %d %d %d",&n,&np,&nc,&m)){e_max=0;int s=n,t=n+1;memset(fir,-1,sizeof fir);for (int i=0;i<m;i++){scanf(" (%d,%d)%d",&_u,&_v,&_w);add_edge(_u,_v,_w);}for (int i=0;i<np;i++){scanf(" (%d)%d",&_u,&_w);add_edge(s,_u,_w);}for (int i=0;i<nc;i++){scanf(" (%d)%d",&_u,&_w);add_edge(_u,t,_w);}printf("%d\n",max_flow(s,t));}return 0;
}


dinic算法实现:

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<ctime>
#include<cctype>
#include<cmath>
#include<string>
#include<cstring>
#include<stack>
#include<queue>
#include<list>
#include<vector>
#include<map>
#include<set>
#define sqr(x) ((x)*(x))
#define LL long long
#define itn int
#define INF 0x3f3f3f3f
#define PI 3.1415926535897932384626
#define eps 1e-10
#define maxm 23456
#define maxn 107using namespace std;int fir[maxn];
int u[maxm],v[maxm],cap[maxm],flow[maxm],nex[maxm];
int e_max;
int iter[maxn],q[maxn],lv[maxn];void add_edge(int _u,int _v,int _w)
{int e;e=e_max++;u[e]=_u;v[e]=_v;cap[e]=_w;nex[e]=fir[u[e]];fir[u[e]]=e;e=e_max++;u[e]=_v;v[e]=_u;cap[e]=0;nex[e]=fir[u[e]];fir[u[e]]=e;
}void dinic_bfs(int s)
{int f,r;memset(lv,-1,sizeof lv);q[f=r=0]=s;lv[s]=0;while(f<=r){int x=q[f++];for (int e=fir[x];~e;e=nex[e]){if (cap[e]>flow[e] && lv[v[e]]<0){lv[v[e]]=lv[u[e]]+1;q[++r]=v[e];}}}
}int dinic_dfs(int _u,int t,int _f)
{if (_u==t)  return _f;for (int &e=iter[_u];~e;e=nex[e]){if (cap[e]>flow[e] && lv[_u]<lv[v[e]]){int _d=dinic_dfs(v[e],t,min(_f,cap[e]-flow[e]));if (_d>0){flow[e]+=_d;flow[e^1]-=_d;return _d;}}}return 0;
}int max_flow(int s,int t)
{memset(flow,0,sizeof flow);int total_flow=0;for (;;){dinic_bfs(s);if (lv[t]<0)    return total_flow;memcpy(iter,fir,sizeof iter);int _f;while ((_f=dinic_dfs(s,t,INF))>0)total_flow+=_f;}return total_flow;
}int main()
{#ifndef ONLINE_JUDGEfreopen("/home/fcbruce/文档/code/t","r",stdin);#endif // ONLINE_JUDGEint n,np,nc,m,_u,_v,_w;while (~scanf("%d %d %d %d",&n,&np,&nc,&m)){e_max=0;int s=n,t=n+1;memset(fir,-1,sizeof fir);for (int i=0;i<m;i++){scanf(" (%d,%d)%d",&_u,&_v,&_w);add_edge(_u,_v,_w);}for (int i=0;i<np;i++){scanf(" (%d)%d",&_u,&_w);add_edge(s,_u,_w);}for (int i=0;i<nc;i++){scanf(" (%d)%d",&_u,&_w);add_edge(_u,t,_w);}printf("%d\n",max_flow(s,t));}return 0;
}

这篇关于POJ 1459 ZOJ 1734 Power Network (网络最大流)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099229

相关文章

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];