Pandas数据清洗之数据分组和删除重复数据

2024-08-23 07:52

本文主要是介绍Pandas数据清洗之数据分组和删除重复数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据分组

在Pandas中,你可以使用groupby()函数对DataFrame进行分组。这是一个非常强大的功能,可以基于一个或多个列的值来聚合数据。

这里是一个简单的例子来说明如何使用groupby()

  1. 导入Pandas库:

    import pandas as pd
    
  2. 创建一个示例DataFrame:

    data = {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],'C': [1, 2, 3, 4, 5, 6, 7, 8],'D': [10, 20, 30, 40, 50, 60, 70, 80]
    }
    df = pd.DataFrame(data)
    
  3. 使用groupby()函数进行分组:

    grouped = df.groupby('A')
    
  4. 应用聚合函数:

    • 要计算每个组中C列的总和:
      sum_grouped = grouped['C'].sum()
      
    • 要计算每个组中C列的平均值:
      mean_grouped = grouped['C'].mean()
      

如果你想要基于多列进行分组,只需将列名放在一个列表里即可:

grouped_multi = df.groupby(['A', 'B'])

你可以根据需要选择不同的聚合函数,例如sum(), mean(), count(), min(), max()等。

删除重复数据

在Pandas中,删除DataFrame中的重复行可以通过drop_duplicates()方法来实现。这个方法提供了很多选项来定制你如何处理重复的数据。

以下是一些基本用法:

示例代码:

  1. 导入Pandas库:

    import pandas as pd
    
  2. 创建一个示例DataFrame:

    data = {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],'C': [1, 2, 3, 4, 5, 6, 7, 8],'D': [10, 20, 30, 40, 50, 60, 70, 80]
    }
    df = pd.DataFrame(data)
    
  3. 删除重复行:

    • 删除所有列都相同的行:

      df_unique = df.drop_duplicates()
      
    • 只考虑特定列进行去重:

      df_unique = df.drop_duplicates(subset=['A', 'B'])
      
    • 保留最后一次出现的重复行:

      df_unique = df.drop_duplicates(keep='last')
      
    • 不保留任何重复行(即删除所有重复行):

      df_unique = df.drop_duplicates(keep=False)
      
  4. 查看结果:

    print(df_unique)
    

参数解释:

  • subset=None: 指定要检查哪些列是否存在重复项。默认为 None,表示检查所有列。
  • keep='first': 指定保留哪个版本的重复项。默认为 'first',表示保留第一次出现的重复项;也可以设置为 'last' 以保留最后一次出现的重复项;如果设置为 False,则删除所有重复项。
  • inplace=False: 如果设置为 True,则直接在原DataFrame上修改并返回 None。如果设置为 False(默认),则返回一个新的DataFrame。

这篇关于Pandas数据清洗之数据分组和删除重复数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098788

相关文章

MyBatis-Plus逻辑删除实现过程

《MyBatis-Plus逻辑删除实现过程》本文介绍了MyBatis-Plus如何实现逻辑删除功能,包括自动填充字段、配置与实现步骤、常见应用场景,并展示了如何使用remove方法进行逻辑删除,逻辑删... 目录1. 逻辑删除的必要性编程1.1 逻辑删除的定义1.2 逻辑删php除的优点1.3 适用场景2.

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

pandas使用apply函数给表格同时添加多列

《pandas使用apply函数给表格同时添加多列》本文介绍了利用Pandas的apply函数在DataFrame中同时添加多列,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、Pandas使用apply函数给表格同时添加多列二、应用示例一、Pandas使用apply函

pandas批量拆分与合并Excel文件的实现示例

《pandas批量拆分与合并Excel文件的实现示例》本文介绍了Pandas中基于整数位置的iloc和基于标签的loc方法进行数据索引和切片的操作,并将大Excel文件拆分合并,具有一定的参考价值,感... 目录一、Pandas 进行索引和切编程片的iloc、loc方法二、Pandas批量拆分与合并Exce

C#实现插入与删除Word文档目录的完整指南

《C#实现插入与删除Word文档目录的完整指南》在日常的办公自动化或文档处理场景中,Word文档的目录扮演着至关重要的角色,本文将深入探讨如何利用强大的第三方库Spire.Docfor.NET,在C#... 目录Spire.Doc for .NET 库:Word 文档处理利器自动化生成:C# 插入 Word

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p