本文主要是介绍Spark学习笔记整理 --- 2018-06-23【Spark的部署模式与对比】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
本节首先介绍Spark支持的三种典型集群部署方式,即standalone、Spark on Mesos和Spark on YARN;然后,介绍在企业中是如何具体部署和应用Spark框架的,在企业实际应用环境中,针对不同的应用场景,可以采用不同的部署应用方式,或者采用Spark完全替代原有的Hadoop架构,或者采用Spark和Hadoop一起部署的方式。Spark三种部署方式
Spark应用程序在集群上部署运行时,可以由不同的组件为其提供资源管理调度服务(资源包括CPU、内存等)。比如,可以使用自带的独立集群管理器(standalone),或者使用YARN,也可以使用Mesos。因此,Spark包括三种不同类型的集群部署方式,包括standalone、Spark on Mesos和Spark on YARN。
1.standalone模式
与MapReduce1.0框架类似,Spark框架本身也自带了完整的资源调度管理服务,可以独立部署到一个集群中,而不需要依赖其他系统来为其提供资源管理调度服务。在架构的设计上,Spark与MapReduce1.0完全一致,都是由一个Master和若干个Slave构成,并且以槽(slot)作为资源分配单位。不同的是,Spark中的槽不再像MapReduce1.0那样分为Map 槽和Reduce槽,而是只设计了统一的一种槽提供给各种任务来使用。
2.Spark on Mesos模式
Mesos是一种资源调度管理框架,可以为运行在它上面的Spark提供服务。Spark on Mesos模式中,Spark程序所需要的各种资源,都由Mesos负责调度。由于Mesos和Spark存在一定的血缘关系&#
这篇关于Spark学习笔记整理 --- 2018-06-23【Spark的部署模式与对比】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!