代码随想录算法训练营第14天 | 第六章 二叉树 part04

2024-08-23 06:28

本文主要是介绍代码随想录算法训练营第14天 | 第六章 二叉树 part04,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

      • 找树左下角的值
      • 路径总和
      • 从中序与后序遍历序列构造二叉树

找树左下角的值

本题递归偏难,反而迭代简单属于模板题, 两种方法掌握一下

题目链接/文章讲解/视频讲解: link代码随想录
原本这题还是比较简单的,但是很恶心的一点是最后一层的最左边,不是最左边的最后一层。所以必须要迭代。注意迭代的初始条件int maxDepth=-1;最开始我设置为0,但是发现如果只有一个根节点的话,0>0,为非,无法进入迭代。所以要把最大深度设置为-1;突然发现迭代法挺简单的,只要知道迭代终止条件,只要知道迭代内容即可。确实方法很巧妙,一直遍历,发现子节点,且深度大于最大深度,更新result;我一直在想,如果有多个子节点,为什么保证一定是最后一层,结果发现,他这个方法,一定是每更新最大一层子节点,就会更新一次,之后的由于判断为非,所以不会更新。

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int maxDepth=-1;int result;void traversal(TreeNode* root, int depth) {if(root->left==nullptr && root->right==nullptr){if (depth > maxDepth) {maxDepth = depth;result = root->val;}return ;}if(root->left){depth++;traversal(root->left, depth) ;depth--; // 回溯}if(root->right){depth++;traversal(root->right, depth) ;depth--; // 回溯}}int findBottomLeftValue(TreeNode* root) {traversal(root,0);return result;}
};

这题没有比层序遍历更简单的了,一层层的遍历,当遍历到最后一层的时候,把第一个弹出来。首先先定义一个队列进行存储。然后开启层序遍历。很简单,层序遍历轻车熟路了。先判断是否为空,把根节点压入队列,判断队列是否为空,每一个for循环遍历一层,把第一个值导入到result,这么到最后一层时就是结果了。

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int findBottomLeftValue(TreeNode* root) {queue<TreeNode*> que;if (root != NULL) que.push(root);int result = 0;while (!que.empty()) {int size = que.size();for (int i = 0; i < size; i++) {TreeNode* node = que.front();que.pop();if (i == 0) result = node->val; // 记录最后一行第一个元素if (node->left) que.push(node->left);if (node->right) que.push(node->right);}}return result;}
};

depth++;
traversal(root->left, depth) ;
depth–; // 回溯
对于回溯算法的简写 traversal(root->left, depth+1) ;确实思路很清晰,直接把当前值一直+1往下传,省了+1和-1的操作。

路径总和

本题 又一次涉及到回溯的过程,而且回溯的过程隐藏的还挺深,建议先看视频来理解

  1. 路径总和,和 113. 路径总和ii 一起做了。 优先掌握递归法。

题目链接/文章讲解/视频讲解:代码随想录link
这题确实有点难度,但是运用回溯的方法确实也好理解,一遍遍的遍历。返回的是bool,那么就要用来if语句判断,只要满足找到的条件,就一直回溯返回真,其它情况就返回假。注意一定要满足条件情况下返回真,不满足就不返回,直到最后返回false

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:bool traversal(TreeNode* root,int count){if(count!=0&&root->left==nullptr&&root->right==nullptr)return false;if(count==0&&root->left==nullptr&&root->right==nullptr)return true;if(root->left)if(traversal( root->left, count-root->left->val ))return true;if(root->right)if(traversal( root->right, count-root->right->val))return true;return false;}bool hasPathSum(TreeNode* root, int targetSum) {if(root==nullptr)return false;return traversal(root, targetSum-root->val);}
};

对于查找所有路径。遇到了叶子节点且找到了和为sum的路径,直接把路径push到结果中。path用来存储临时的路径,一旦叶子节点满足条件,就将整条路径push到result中

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector<vector<int>> result;vector<int> path;void traversal(TreeNode* cur, int count) {if (!cur->left && !cur->right && count == 0) { result.push_back(path);//结束了,第一个path结束return;}if (!cur->left && !cur->right) return;if (cur->left) {path.push_back(cur->left->val);traversal(cur->left, count -cur->left->val);       path.pop_back();               }if (cur->right) { path.push_back(cur->right->val);traversal(cur->right, count-cur->right->val);   path.pop_back();                }return ;}vector<vector<int>> pathSum(TreeNode* root, int targetSum) {result.clear();path.clear();if (root == NULL) return result;path.push_back(root->val); // 把根节点放进路径traversal(root, targetSum - root->val);return result;}
};

从中序与后序遍历序列构造二叉树

本题算是比较难的二叉树题目了,大家先看视频来理解。

106.从中序与后序遍历序列构造二叉树,105.从前序与中序遍历序列构造二叉树 一起做,思路一样的

题目链接/文章讲解/视频讲解:代码随想录link
后序遍历的最后一个元素为根节点。这么根据前序遍历和中序遍历,便可以得出根节点左右两部分,然后继续分割,继续分割,便可构造二叉树。前序和后序不能唯一确定一棵二叉树!,因为没有中序遍历无法确定左右部分,也就是无法分割。
中序与后序遍历,

  1. 根据后序遍历确定中间结点,然后找到中间结点
  2. 根据中间节点,分成左右两部分
  3. 确定左后序遍历,和左中序遍历
  4. 确定右后序遍历,和右中序遍历
  5. 将指针指向左右部分
  6. 继续迭代。直到迭代完
/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
private:TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {if (postorder.size() == 0) return NULL;// 后序遍历数组最后一个元素,就是当前的中间节点int rootValue = postorder[postorder.size() - 1];TreeNode* root = new TreeNode(rootValue);// 叶子节点if (postorder.size() == 1) return root;// 找到中序遍历的切割点int delimiterIndex;for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 左闭右开区间:[0, delimiterIndex)vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);// [delimiterIndex + 1, end)vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );// postorder 舍弃末尾元素postorder.resize(postorder.size() - 1);// 切割后序数组// 依然左闭右开,注意这里使用了左中序数组大小作为切割点// [0, leftInorder.size)vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());// [leftInorder.size(), end)vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());root->left = traversal(leftInorder, leftPostorder);root->right = traversal(rightInorder, rightPostorder);return root;}
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (inorder.size() == 0 || postorder.size() == 0) return NULL;return traversal(inorder, postorder);}
};

对于从前序与中序遍历序列构造二叉树,本质上也是一样,只要知道分割点即可一一分而治之。

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:TreeNode* traversal (vector<int>& inorder, vector<int>& preorder) {if (preorder.size() == 0) return NULL;// 前序遍历数组第一个元素,就是当前的中间节点int rootValue = preorder[0];TreeNode* root = new TreeNode(rootValue);// 叶子节点if (preorder.size() == 1) return root;// 找到中序遍历的切割点int delimiterIndex;for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 左闭右开区间:[0, delimiterIndex)vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);// [delimiterIndex + 1, end)vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );// preorder 舍弃初始元素preorder.erase(preorder.begin());// 切割后序数组// 依然左闭右开,注意这里使用了左中序数组大小作为切割点// [0, leftInorder.size)vector<int> leftPreorder(preorder.begin(), preorder.begin() + leftInorder.size());// [leftInorder.size(), end)vector<int> rightPreorder(preorder.begin() + leftInorder.size(), preorder.end());root->left = traversal(leftInorder, leftPreorder);root->right = traversal(rightInorder, rightPreorder);return root;}TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {if (inorder.size() == 0 || preorder.size() == 0) return NULL;return traversal(inorder, preorder);}
};

这篇关于代码随想录算法训练营第14天 | 第六章 二叉树 part04的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098600

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费