【python】灰色预测 GM(1,1) 模型

2024-08-23 02:52
文章标签 python 模型 预测 灰色 gm

本文主要是介绍【python】灰色预测 GM(1,1) 模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • python代码


前言

用 python 复刻上一篇博客的 Matlab 代码。

【学习笔记】灰色预测 GM(1,1) 模型 —— Matlab

python代码

# %%
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
from matplotlib.pylab import mplmpl.rcParams['font.sans-serif'] = ['SimHei']   #设置字体
mpl.rcParams['axes.unicode_minus'] = False     # - 号设置year =np.array([1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004]).T  # 横坐标表示年份
x0 = np.array([174,179,183,189,207,234,220.5,256,270,285]).T # 原始数据序列# 创建第一个图形
plt.figure(1)
n = x0.shape[0]
x1 = np.cumsum(x0)
plt.plot(year,x0,'o-')
plt.plot(year,x1,'r-')
plt.legend('x(0)','x(1)')
plt.grid(True)
plt.xlabel('年份')  
plt.ylabel('排污总量')# %%
# 级比检验
rho = np.zeros((n,))
# 计算 rho
for i in range(1, n):rho[i] = x0[i] / x1[i-1]# 创建图表
plt.figure(2)
plt.plot(year[1:], rho[1:], 'o-', label='rho')
plt.plot([year[1], year[-1]], [0.5, 0.5], '-', label='临界线')
plt.grid(True)# 在指定坐标添加文本
plt.text(year[-2] + 0.2, 0.55, '临界线')# 设置x轴刻度
plt.xticks(year[1:])# 添加标签
plt.xlabel('年份')
plt.ylabel('原始数据的光滑度')# 显示图表
plt.legend()
plt.show()# %%
# 指标1:光滑比小于0.5的数据占比
num1 = np.sum(rho<0.5)/(n-1)
# 指标2:除去前两个时期外,光滑比小于0.5的数据占比
num2 = np.sum(rho[2:]<0.5)/(n-3)print("指标一:",num1*100,"%")
print("指标二:",num2*100,"%")# %%
def gm11(x0, predict_num):n = x0.shape[0]x1 = np.cumsum(x0)z1 = 0.5 * x1[1:n] + 0.5 * x1[0:n-1]y = x0[1:]x = z1# 最小二乘法求解k = ((n-1)*np.sum(x*y)-np.sum(x)*np.sum(y))/((n-1)*np.sum(x*x)-np.sum(x)*np.sum(x))b = (np.sum(x*x)*np.sum(y)-np.sum(x)*np.sum(x*y))/((n-1)*np.sum(x*x)-np.sum(x)*np.sum(x))a = -ku = bx0_hat = np.zeros((n,))x0_hat[0] = x0[0]for m in range(n-1):x0_hat[m+1] = (1-np.exp(a))*(x0[0]-u/a)*np.exp(-a*(m+1))result = np.zeros((predict_num,))for i in range(predict_num):result[i] = (1-np.exp(a))*(x0[0]-u/a)*np.exp(-a*(n+i))# 计算绝对残差和相对残差absolute_residuals = x0[1:] - x0_hat[1:]   # 从第二项开始计算绝对残差,因为第一项是相同的relative_residuals = np.abs(absolute_residuals) / x0[1:]  # 计算相对残差# 计算级比和级比偏差class_ratio = x0[1:] / x0[0:n-1]eta = np.abs(1-(1-0.5*a)/(1+0.5*a)*(1./class_ratio)) # 计算级比偏差return result, x0_hat, relative_residuals, eta# %%
if num1 > 0.6 and num2 > 0.9:if n > 7:    # 将数据分为训练组和试验组(根据原数据量大小n来取,n小于7则取最后两年为试验组,n大于7则取最后三年为试验组)test_num = 3else:test_num = 2train_x0 = x0[0:n-test_num]   # 训练数据print('训练数据是: ',train_x0)test_x0 =  x0[n-test_num:]  # 试验数据print('试验数据是: ',test_x0)# 使用GM(1,1)模型对训练数据进行训练,返回的result就是往后预测test_num期的数据print('GM(1,1)模型预测')result1,_,_,_ = gm11(train_x0, test_num) # 使用传统的GM(1,1)模型对训练数据,并预测后test_num期的结果# 绘制对试验数据进行预测的图形test_year = year[n-test_num:]  # 试验组对应的年份plt.figure(3)plt.plot(test_year,test_x0,'o-',label='试验组的真实数据')plt.plot(test_year,result1,'*-',label='预测值')plt.grid(True) # 设置x轴刻度plt.xticks(year[n-test_num:])plt.legend() plt.xlabel('年份')plt.ylabel('排污总量')predict_num = int(input('请输入你要往后面预测的期数:'))# 计算使用传统GM模型的结果result, x0_hat, relative_residuals, eta = gm11(x0, predict_num)## 绘制相对残差和级比偏差的图形plt.figure(4)# 创建一个2行1列的子图布局plt.subplot(2, 1, 1)  # 第1个子图plt.plot(year[1:], relative_residuals,'*-',label='相对残差')plt.xticks(year[1:])plt.legend()plt.grid(True) plt.subplot(2, 1, 2)  # 第2个子图plt.plot(year[1:], eta,'*-',label='级比偏差')plt.xticks(year[1:])plt.legend()plt.grid(True) plt.xlabel('年份')## 残差检验average_relative_residuals = np.mean(relative_residuals)  # 计算平均相对残差 mean函数用来均值print('平均相对残差为',average_relative_residuals)## 级比偏差检验average_eta = np.mean(eta)  # 计算平均级比偏差print('平均级比偏差为',average_eta)## 绘制最终的预测效果图plt.figure(5)plt.plot(year, x0, '-o', label='原始数据')plt.plot(year, x0_hat, '-*m', label='拟合数据')year_predict = np.arange(year[n-1], year[n-1] + predict_num + 1)res = np.append(x0[n-1],result)plt.plot(year_predict, res, '-*k', label='预测数据' )plt.grid(True) plt.legend()  plt.xticks(year[1:] + predict_num)plt.xlabel('年份')plt.ylabel('排污总量')

运行结果:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

这篇关于【python】灰色预测 GM(1,1) 模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1098151

相关文章

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

使用Python实现一个优雅的异步定时器

《使用Python实现一个优雅的异步定时器》在Python中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于asyncio和threading模块,可扩展的异步定... 目录需求背景代码1. 单例事件循环的实现2. 事件循环的运行与关闭3. 定时器核心逻辑4. 启动与停

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字