python库——sklearn的关键组件和参数设置

2024-08-22 23:44

本文主要是介绍python库——sklearn的关键组件和参数设置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 模型构建
      • 线性回归
      • 逻辑回归
      • 决策树分类器
      • 随机森林
      • 支持向量机
      • K-近邻
    • 模型评估
      • 交叉验证
      • 性能指标
    • 特征工程
      • 主成分分析
      • 标准化和归一化


scikit-learn,简称sklearn,是Python中一个广泛使用的机器学习库,它建立在NumPy、SciPy和Matplotlib这些科学计算库之上。sklearn提供了简单而有效的工具来进行数据挖掘和数据分析。我们将介绍sklearn中一些关键组件的参数设置。

模型构建

线性回归

线性回归是一种预测连续值输出的监督学习算法。

from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
  • X_train 是训练数据的特征集。
  • y_train 是训练数据的目标变量。

逻辑回归

逻辑回归用于分类问题,尤其是二分类问题。

from sklearn.linear_model import LogisticRegression
model = LogisticRegression(solver='liblinear')
model.fit(X_train, y_train)
  • solver 参数用于指定算法,liblinear 是一个常用的选项,适用于小数据集。

决策树分类器

决策树是一种用于分类和回归的算法,易于理解和解释。

from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier(criterion='gini', max_depth=3)
model.fit(X_train, y_train)
  • criterion 用于指定不纯度的度量,ginientropy 是常见的选择。
  • max_depth 控制树的最大深度,防止过拟合。

随机森林

随机森林是一种集成学习方法,通过构建多个决策树来进行分类或回归。

from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
  • n_estimators 指定森林中树的数量。
  • random_state 用于确保结果的可复现性。

支持向量机

SVM是一种强大的分类器,也可以用于回归问题。

from sklearn.svm import SVC
model = SVC(kernel='linear', C=1.0)
model.fit(X_train, y_train)
  • kernel 指定核函数类型,linearrbfpoly 是常见的选择。
  • C 是正则化参数,控制模型的复杂度。

K-近邻

K-近邻是一种基于实例的分类器,根据最近的K个邻居进行决策。

from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=5)
model.fit(X_train, y_train)
  • n_neighbors 指定邻居的数量。

模型评估

交叉验证

交叉验证是一种评估模型泛化能力的技术。

from sklearn.model_selection import cross_val_score
scores = cross_val_score(model, X_train, y_train, cv=5)
  • cv 指定交叉验证的折数。

性能指标

不同的性能指标用于评估模型的预测效果。

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
y_pred = model.predict(X_test)
print(accuracy_score(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
  • accuracy_score 计算模型的准确率。
  • confusion_matrix 显示混淆矩阵。
  • classification_report 提供详细的分类报告。

特征工程

主成分分析

PCA是一种降维技术,用于在保留数据集中大部分变异性的同时减少特征的数量。

from sklearn.decomposition import PCA
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_train)
  • n_components 指定要保留的主成分数量。

标准化和归一化

特征缩放是预处理数据的重要步骤,可以提高模型的性能。

from sklearn.preprocessing import StandardScaler, MinMaxScaler
scaler = StandardScaler()  # 或 MinMaxScaler()
X_scaled = scaler.fit_transform(X_train)
  • StandardScaler 将数据标准化到均值为0,标准差为1。
  • MinMaxScaler 将特征缩放到给定的范围内,通常是0到1。

通过这些sklearn的关键组件和参数设置,可以构建、评估和优化机器学习模型。sklearn的简洁性和一致性使得机器学习任务变得更加容易和高效。

这篇关于python库——sklearn的关键组件和参数设置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097737

相关文章

JS常用组件收集

收集了一些平时遇到的前端比较优秀的组件,方便以后开发的时候查找!!! 函数工具: Lodash 页面固定: stickUp、jQuery.Pin 轮播: unslider、swiper 开关: switch 复选框: icheck 气泡: grumble 隐藏元素: Headroom

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

wolfSSL参数设置或配置项解释

1. wolfCrypt Only 解释:wolfCrypt是一个开源的、轻量级的、可移植的加密库,支持多种加密算法和协议。选择“wolfCrypt Only”意味着系统或应用将仅使用wolfCrypt库进行加密操作,而不依赖其他加密库。 2. DTLS Support 解释:DTLS(Datagram Transport Layer Security)是一种基于UDP的安全协议,提供类似于

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',