python库——sklearn的关键组件和参数设置

2024-08-22 23:44

本文主要是介绍python库——sklearn的关键组件和参数设置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 模型构建
      • 线性回归
      • 逻辑回归
      • 决策树分类器
      • 随机森林
      • 支持向量机
      • K-近邻
    • 模型评估
      • 交叉验证
      • 性能指标
    • 特征工程
      • 主成分分析
      • 标准化和归一化


scikit-learn,简称sklearn,是Python中一个广泛使用的机器学习库,它建立在NumPy、SciPy和Matplotlib这些科学计算库之上。sklearn提供了简单而有效的工具来进行数据挖掘和数据分析。我们将介绍sklearn中一些关键组件的参数设置。

模型构建

线性回归

线性回归是一种预测连续值输出的监督学习算法。

from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
  • X_train 是训练数据的特征集。
  • y_train 是训练数据的目标变量。

逻辑回归

逻辑回归用于分类问题,尤其是二分类问题。

from sklearn.linear_model import LogisticRegression
model = LogisticRegression(solver='liblinear')
model.fit(X_train, y_train)
  • solver 参数用于指定算法,liblinear 是一个常用的选项,适用于小数据集。

决策树分类器

决策树是一种用于分类和回归的算法,易于理解和解释。

from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier(criterion='gini', max_depth=3)
model.fit(X_train, y_train)
  • criterion 用于指定不纯度的度量,ginientropy 是常见的选择。
  • max_depth 控制树的最大深度,防止过拟合。

随机森林

随机森林是一种集成学习方法,通过构建多个决策树来进行分类或回归。

from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
  • n_estimators 指定森林中树的数量。
  • random_state 用于确保结果的可复现性。

支持向量机

SVM是一种强大的分类器,也可以用于回归问题。

from sklearn.svm import SVC
model = SVC(kernel='linear', C=1.0)
model.fit(X_train, y_train)
  • kernel 指定核函数类型,linearrbfpoly 是常见的选择。
  • C 是正则化参数,控制模型的复杂度。

K-近邻

K-近邻是一种基于实例的分类器,根据最近的K个邻居进行决策。

from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=5)
model.fit(X_train, y_train)
  • n_neighbors 指定邻居的数量。

模型评估

交叉验证

交叉验证是一种评估模型泛化能力的技术。

from sklearn.model_selection import cross_val_score
scores = cross_val_score(model, X_train, y_train, cv=5)
  • cv 指定交叉验证的折数。

性能指标

不同的性能指标用于评估模型的预测效果。

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
y_pred = model.predict(X_test)
print(accuracy_score(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
  • accuracy_score 计算模型的准确率。
  • confusion_matrix 显示混淆矩阵。
  • classification_report 提供详细的分类报告。

特征工程

主成分分析

PCA是一种降维技术,用于在保留数据集中大部分变异性的同时减少特征的数量。

from sklearn.decomposition import PCA
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_train)
  • n_components 指定要保留的主成分数量。

标准化和归一化

特征缩放是预处理数据的重要步骤,可以提高模型的性能。

from sklearn.preprocessing import StandardScaler, MinMaxScaler
scaler = StandardScaler()  # 或 MinMaxScaler()
X_scaled = scaler.fit_transform(X_train)
  • StandardScaler 将数据标准化到均值为0,标准差为1。
  • MinMaxScaler 将特征缩放到给定的范围内,通常是0到1。

通过这些sklearn的关键组件和参数设置,可以构建、评估和优化机器学习模型。sklearn的简洁性和一致性使得机器学习任务变得更加容易和高效。

这篇关于python库——sklearn的关键组件和参数设置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097737

相关文章

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到