python库——sklearn的关键组件和参数设置

2024-08-22 23:44

本文主要是介绍python库——sklearn的关键组件和参数设置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 模型构建
      • 线性回归
      • 逻辑回归
      • 决策树分类器
      • 随机森林
      • 支持向量机
      • K-近邻
    • 模型评估
      • 交叉验证
      • 性能指标
    • 特征工程
      • 主成分分析
      • 标准化和归一化


scikit-learn,简称sklearn,是Python中一个广泛使用的机器学习库,它建立在NumPy、SciPy和Matplotlib这些科学计算库之上。sklearn提供了简单而有效的工具来进行数据挖掘和数据分析。我们将介绍sklearn中一些关键组件的参数设置。

模型构建

线性回归

线性回归是一种预测连续值输出的监督学习算法。

from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
  • X_train 是训练数据的特征集。
  • y_train 是训练数据的目标变量。

逻辑回归

逻辑回归用于分类问题,尤其是二分类问题。

from sklearn.linear_model import LogisticRegression
model = LogisticRegression(solver='liblinear')
model.fit(X_train, y_train)
  • solver 参数用于指定算法,liblinear 是一个常用的选项,适用于小数据集。

决策树分类器

决策树是一种用于分类和回归的算法,易于理解和解释。

from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier(criterion='gini', max_depth=3)
model.fit(X_train, y_train)
  • criterion 用于指定不纯度的度量,ginientropy 是常见的选择。
  • max_depth 控制树的最大深度,防止过拟合。

随机森林

随机森林是一种集成学习方法,通过构建多个决策树来进行分类或回归。

from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
  • n_estimators 指定森林中树的数量。
  • random_state 用于确保结果的可复现性。

支持向量机

SVM是一种强大的分类器,也可以用于回归问题。

from sklearn.svm import SVC
model = SVC(kernel='linear', C=1.0)
model.fit(X_train, y_train)
  • kernel 指定核函数类型,linearrbfpoly 是常见的选择。
  • C 是正则化参数,控制模型的复杂度。

K-近邻

K-近邻是一种基于实例的分类器,根据最近的K个邻居进行决策。

from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=5)
model.fit(X_train, y_train)
  • n_neighbors 指定邻居的数量。

模型评估

交叉验证

交叉验证是一种评估模型泛化能力的技术。

from sklearn.model_selection import cross_val_score
scores = cross_val_score(model, X_train, y_train, cv=5)
  • cv 指定交叉验证的折数。

性能指标

不同的性能指标用于评估模型的预测效果。

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
y_pred = model.predict(X_test)
print(accuracy_score(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
  • accuracy_score 计算模型的准确率。
  • confusion_matrix 显示混淆矩阵。
  • classification_report 提供详细的分类报告。

特征工程

主成分分析

PCA是一种降维技术,用于在保留数据集中大部分变异性的同时减少特征的数量。

from sklearn.decomposition import PCA
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_train)
  • n_components 指定要保留的主成分数量。

标准化和归一化

特征缩放是预处理数据的重要步骤,可以提高模型的性能。

from sklearn.preprocessing import StandardScaler, MinMaxScaler
scaler = StandardScaler()  # 或 MinMaxScaler()
X_scaled = scaler.fit_transform(X_train)
  • StandardScaler 将数据标准化到均值为0,标准差为1。
  • MinMaxScaler 将特征缩放到给定的范围内,通常是0到1。

通过这些sklearn的关键组件和参数设置,可以构建、评估和优化机器学习模型。sklearn的简洁性和一致性使得机器学习任务变得更加容易和高效。

这篇关于python库——sklearn的关键组件和参数设置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097737

相关文章

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

一文带你搞懂Python中__init__.py到底是什么

《一文带你搞懂Python中__init__.py到底是什么》朋友们,今天我们来聊聊Python里一个低调却至关重要的文件——__init__.py,有些人可能听说过它是“包的标志”,也有人觉得它“没... 目录先搞懂 python 模块(module)Python 包(package)是啥?那么 __in

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

使用Python实现一个优雅的异步定时器

《使用Python实现一个优雅的异步定时器》在Python中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于asyncio和threading模块,可扩展的异步定... 目录需求背景代码1. 单例事件循环的实现2. 事件循环的运行与关闭3. 定时器核心逻辑4. 启动与停

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调