【学习笔记】灰色预测 GM(1,1) 模型 —— Matlab

2024-08-22 22:44

本文主要是介绍【学习笔记】灰色预测 GM(1,1) 模型 —— Matlab,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、灰色预测模型
    • 灰色预测
    • 适用情况
    • GM (1,1)模型
  • 二、示例
    • 指数规律检验(原始数据级比检验)
      • 级比检验的定义
      • GM(1,1) 模型的级比检验
    • 模型求解
      • 求解微分方程
    • 模型评价(检验模型对原始数据的拟合程度)
      • 残差检验
      • 级比偏差检验
  • 三、代码实现----Matlab
    • 级比检验代码
    • 模型求解代码
    • 调用模型求解代码进行预测


前言

通过模型算法,熟练对Matlab的应用。
学习视频链接:
https://www.bilibili.com/video/BV1EK41187QF?p=48&vd_source=67471d3a1b4f517b7a7964093e62f7e6

一、灰色预测模型

灰色系统理论在另一篇博客中已经阐述过了,此处不作赘述。

参考链接:【学习笔记】Matlab和python双语言的学习(灰色关联分析法)

灰色预测

  • 所谓灰色预测,就是对既含有已知信息又含有不确定信息的系统进行预测,就是对在一定范围内变化的、与时间有关的灰色过程进行预测。

适用情况

  1. 数据是以年份度量非负数据(如果是月份或者季度数据一般要用时间序列模型),比如定时求量的题目,即已知一些年份数据,预测下一年的数据,常见有GDP、人口数量、耕地面积、粮食产量等;或者定量求时,已知一些年份数据和某灾变的阈值,预测下次灾变时间。
  2. 数据能经过准指数规律的检验(除了前两期外,后面至少90%的期数的光滑比要低于0.5)。
  3. 数据的期数较短且和其他数据之间的关联性不强(小于等于10,也不能太短了,比如只有3期数据),要是数据期数较长,一般用传统的时间序列模型比较合适。

GM (1,1)模型

  • G M : G r e y m o d e l GM:Greymodel GM:Greymodel 灰色模型,
  • ( 1 , 1 ) : (1,1){:} (1,1): 只含有一个变量的一阶微分方程模型
  • 如何用 G M ( 1 , 1 ) GM(1,1) GM(1,1) 进行灰色预测?
    • 根据原始的离散非负数据列,通过累加等方式削弱随机性、获得有规律的离散数据列
    • 建立相应的微分方程模型,得到离散点处的解
    • 再通过累减求得的原始数据的估计值,从而对原始数据预测

二、示例

  • 长江在 1995-2004 年废水排放总量如下,如果不采取保护措施,请对今后水质污染发展趋势做出预测。
    在这里插入图片描述

指数规律检验(原始数据级比检验)

级比检验的定义

  • 为了确定原始数据是否可使用灰色预测模型,需要对原始数据进行级比检验
  • 要使用灰色预测数据首先应具有准指数规律:
    累加 r r r 次的序列为: x ( r ) = ( x ( r ) ( 1 ) , x ( r ) ( 2 ) , . . . , x ( r ) ( n ) ) x^{(r)}=\left(x^{(r)}(1),x^{(r)}(2),...,x^{(r)}(n)\right) x(r)=(x(r)(1),x(r)(2),...,x(r)(n)),定义级比 σ ( k ) = x ( r ) ( k ) x ( r ) ( k − 1 ) , k = 2 , 3 , . . . , n \sigma(k)=\frac{x^{(r)}(k)}{x^{(r)}(k-1)},k=2,3,...,n σ(k)=x(r)(k1)x(r)(k),k=2,3,...,n
    对于 ∀ k , σ ( k ) ∈ [ a , b ] \forall k,\sigma(k)\in[a,b] k,σ(k)[a,b],且区间长度 δ = b − a < 0.5 \delta=b-a<0.5 δ=ba<0.5,则称累加 r r r 次后的序列具有准指数规律

GM(1,1) 模型的级比检验

  • 对于 G M ( 1 , 1 ) GM(1,1) GM(1,1) 模型中,我们只需要判断累加一次后的序列 x ( 1 ) = ( x ( 1 ) ( 1 ) , x ( 1 ) ( 2 ) , … , x ( 1 ) ( n ) ) x^{(1)}=\left(x^{(1)}(1),x^{(1)}(2),\ldots,x^{(1)}(n)\right) x(1)=(x(1)(1),x(1)(2),,x(1)(n)) 是否具有准指数规律
  • 根据上述公式:序 列 x ( 1 ) x^{( 1) } x(1) 的级比 σ ( k ) = x ( 1 ) ( k ) x ( 1 ) ( k − 1 ) = x ( 0 ) ( k ) + x ( 1 ) ( k − 1 ) x ( 1 ) ( k − 1 ) = x ( 0 ) ( k ) x ( 1 ) ( k − 1 ) + 1 \sigma ( k) = \frac {x^{( 1) }( k) }{x^{( 1) }( k- 1) }= \frac {x^{( 0) }( k) + x^{( 1) }( k- 1) }{x^{( 1) }( k- 1) }= \frac {x^{( 0) }( k) }{x^{( 1) }( k- 1) }+ 1 σ(k)=x(1)(k1)x(1)(k)=x(1)(k1)x(0)(k)+x(1)(k1)=x(1)(k1)x(0)(k)+1
  • 定义 ρ ( k ) = x ( 0 ) ( k ) x ( 1 ) ( k − 1 ) \rho(k)=\frac{x^{(0)}(k)}{x^{(1)}(k-1)} ρ(k)=x(1)(k1)x(0)(k) 为原始序列 x ( 0 ) x^{(0)} x(0) 的光滑比,注意到 ρ ( k ) = x ( 0 ) ( k ) x ( 0 ) ( 1 ) + x ( 0 ) ( 2 ) + ⋯ + x ( 0 ) ( k − 1 ) \rho(k)=\frac{x^{(0)}(k)}{x^{(0)}(1)+x^{(0)}(2)+\cdots+x^{(0)}(k-1)} ρ(k)=x(0)(1)+x(0)(2)++x(0)(k1)x(0)(k),假设 x ( 0 ) x^{(0)} x(0) 为非负序列(生活中常见的时间序列几乎都满足非负性),那么随着 k k k 增加,最终 ρ ( k ) \rho(k) ρ(k) 会逐渐接近0,因此要使得具有 x ( 1 ) x^{(1)} x(1) 具有准指数规律,即 ∀ k \forall k k,区间长度 δ < 0.5 \delta<0.5 δ<0.5,只需要保证 ρ ( k ) ∈ ( 0 , 0.5 ) \rho(k)\in(0,0.5) ρ(k)(0,0.5) 即可,此时序列 x ( 1 ) x^{(1)} x(1) 的级比 σ ( k ) ∈ ( 1 , 1.5 ) \sigma(k)\in(1,1.5) σ(k)(1,1.5)
  • 实际建模中,我们要计算出 ρ ( k ) ∈ ( 0 , 0.5 ) \rho(k)\in(0,0.5) ρ(k)(0,0.5) 的占比,占比越高越好(一般 ρ ( 2 ) \rho(2) ρ(2) ρ ( 3 ) \rho(3) ρ(3)可能不符合,重点关注后面的数据)

模型求解

在这里插入图片描述

  • 观察发现,没有明显规律,数据也比较少, 而且是以年份度量的,可以考虑用灰色预测
  • 那看不出规律怎么办,可以制造规律:

x ( 0 ) = ( x ( 0 ) ( 1 ) , x ( 0 ) ( 2 ) , . . . , x ( 0 ) ( n ) ) x^{(0)}=(x^{(0)}(1),x^{(0)}(2),...,x^{(0)}(n)) x(0)=(x(0)(1),x(0)(2),...,x(0)(n))是最初的非负数据列,我们可以对其累加,得到新的数据列 x ( 1 ) x^{(1)} x(1)
x ( 1 ) = ( x ( 1 ) ( 1 ) , x ( 1 ) ( 2 ) , … , x ( 1 ) ( n ) ) x^{(1)}=\left(x^{(1)}(1),x^{(1)}(2),\ldots,x^{(1)}(n)\right) x(1)=(x(1)(1),x(1)(2),,x(1)(n))
其中: x ( 1 ) ( m ) = ∑ i = 1 m x ( 0 ) ( i ) , m = 1 , 2 , . . . , n x^{(1)}(m)=\sum_{\mathrm{i}=1}^{\mathrm{m}}x^{(0)}(i),m=1,2,...,n x(1)(m)=i=1mx(0)(i),m=1,2,...,n
在这里插入图片描述

  • 观察可知,新序列 x ( 1 ) x^{(1)} x(1) 曲线像一个指数曲线(直线)
  • 我们可以用指数曲线的表达式来逼近序列 x ( 1 ) x^{(1)} x(1),相应可以构建一阶常微分方程来求解拟合指数曲线的函数表达式
  • 一阶常微分方程
    d x ( 1 ) d t + a x ( 1 ) = u \frac{dx^{(1)}}{dt}+ax^{(1)}=u dtdx(1)+ax(1)=u
    要求出 x ( 1 ) x^{(1)} x(1) 的表达式,就需要解出常微分方程,所以要先知道参数 a a a u u u

求解微分方程

  • 一阶常微分方程
    d x ( 1 ) d t + a x ( 1 ) = u \frac{dx^{(1)}}{dt}+ax^{(1)}=u dtdx(1)+ax(1)=u
  • 已知,我们的数据是离散的,所以 d x ( 1 ) d t \frac {dx^{(1)}}{dt} dtdx(1) 等同于 Δ x ( 1 ) Δ t = Δ x ( 1 ) t − ( t − 1 ) = Δ x ( 1 ) = x ( 1 ) ( t ) − x ( 1 ) ( t − 1 ) = x ( 0 ) ( t ) \frac {\Delta x^{( 1) }}{\Delta t}= \frac {\Delta x^{(1)}}{t-(t-1)}= \Delta x^{(1)}= x^{(1)}(t) - x^{(1)}(t-1) = x^{(0)}(t) ΔtΔx(1)=t(t1)Δx(1)=Δx(1)=x(1)(t)x(1)(t1)=x(0)(t)
    则微分方程变为 x ( 0 ) ( t ) + a x ( 1 ) ( t ) = u x^{(0)}(t)+ax^{(1)}(t)=u x(0)(t)+ax(1)(t)=u
  • 上式为常见的一元线性方程,为了消除数据随机性,定义 z ( 1 ) = ( z ( 1 ) ( 1 ) , z ( 1 ) ( 2 ) , . . . , z ( 1 ) ( n ) ) z^{(1)}=(z^{(1)}(1),z^{(1)}(2),...,z^{(1)}(n)) z(1)=(z(1)(1),z(1)(2),...,z(1)(n))
    其中: z ( 1 ) ( m ) = δ x ( 1 ) ( m ) + ( 1 − δ ) x ( 1 ) ( m − 1 ) , m = 2 , 3 , . . . , n z^{(1)}(m)=\delta x^{(1)}(m)+(1-\delta)x^{(1)}(m-1),m=2,3,...,n z(1)(m)=δx(1)(m)+(1δ)x(1)(m1),m=2,3,...,n δ = 0.5 \delta=0.5 δ=0.5,即为前后时刻的均值
  • 则微分方程改为 x ( 0 ) ( t ) = − a z ( 1 ) ( t ) + u x^{(0)}(t)=-az^{(1)}(t)+u x(0)(t)=az(1)(t)+u
  • 我们已知 x ( 0 ) ( t ) , z ( 1 ) ( t ) x^{(0)}(t),z^{(1)}(t) x(0)(t),z(1)(t)的数据,结合线性回归的知识,可利用线性回归或者用最小二乘法求解参数
  • a ^ \hat{a} a^ u ^ \hat{u} u^ 代入微分方程 d x ( 1 ) d t + a x ( 1 ) = u \frac{dx^{(1)}}{dt}+ax^{(1)}=u dtdx(1)+ax(1)=u,并求解可得
    x ^ ( 1 ) ( m + 1 ) = [ x ( 0 ) ( 1 ) − u ^ a ^ ] e − a ^ m + u ^ a ^ , m = 1 , 2 , . . . , n − 1 \hat{x}^{(1)}(m+1)=\left[x^{(0)}(1)-\frac{\hat{u}}{\hat{a}}\right] e^{-\hat{a}m}+\frac{\hat{u}}{\hat{a}},m=1,2,...,n-1 x^(1)(m+1)=[x(0)(1)a^u^]ea^m+a^u^,m=1,2,...,n1
  • 由于 x ( 1 ) ( m ) = ∑ i = 1 m x ( 0 ) ( i ) , m = 1 , 2 , . . . , n x^{(1)}(m)=\sum_{\mathrm{i}=1}^{\mathrm{m}}x^{(0)}(i),m=1,2,...,n x(1)(m)=i=1mx(0)(i),m=1,2,...,n,所以我们可以得到:
    x ^ ( 0 ) ( m + 1 ) = x ^ ( 1 ) ( m + 1 ) − x ^ ( 1 ) ( m ) = ( 1 − e a ^ ) [ x ( 0 ) ( 1 ) − u ^ a ^ ] e − a ^ m , m = 1 , 2 , . . . , n − 1 \hat{x}^{(0)}(m+1)=\hat{x}^{(1)}(m+1)-\hat{x}^{(1)}(m)=\left(1-e^{\hat{a}}\right)\left[x^{(0)}(1)-\frac{\hat{u}}{\hat{a}}\right]e^{-\hat{a}m},m=1,2,...,n-1 x^(0)(m+1)=x^(1)(m+1)x^(1)(m)=(1ea^)[x(0)(1)a^u^]ea^m,m=1,2,...,n1
  • m m m 取 0,1,…,9 时,得到的 x ^ ( 0 ) \hat{x}^{(0)} x^(0) 为拟合值,大于 9 时,得到的为预测值

模型评价(检验模型对原始数据的拟合程度)

残差检验

  • 绝对残差: ϵ ( k ) = x ( 0 ) ( k ) − x ^ ( 0 ) ( k ) , k = 2 , 3 , . . . , n \epsilon(k)=x^{(0)}(k)-\hat{x}^{(0)}(k),k=2,3,...,n ϵ(k)=x(0)(k)x^(0)(k),k=2,3,...,n
  • 相 对 残 差: ϵ r ( k ) = ∣ x ( 0 ) ( k ) − x ^ ( 0 ) ( k ) ∣ x ( 0 ) ( k ) × 100 % , k = 2 , 3 , . . . , n \epsilon _r( k) = \frac {\left | x^{( 0) }( k) - \hat{x} ^{( 0) }( k) \right | }{x^{( 0) }( k) }\times 100\% , k= 2, 3, . . . , n ϵr(k)=x(0)(k)x(0)(k)x^(0)(k)×100%,k=2,3,...,n
  • 平均相对残差: ϵ ˉ r = 1 n − 1 ∑ k = 2 n ∣ ϵ r ( k ) ∣ \bar{\epsilon}_r=\frac1{n-1}\sum_{k=2}^n|\epsilon_r(k)| ϵˉr=n11k=2nϵr(k)
    • 如果 ϵ ˉ r < 20 % \bar{\epsilon}_r<20\% ϵˉr<20%,则认为 G M ( 1 , 1 ) GM(1,1) GM(1,1) 对原数据的拟合达到一般要求
    • 如果 ϵ ˉ r < 10 % \bar{\epsilon}_r<10\% ϵˉr<10%,则认为 G M ( 1 , 1 ) GM(1,1) GM(1,1) 对原数据的拟合效果非常不错

级比偏差检验

首先计算原始数据级比 σ ( k ) = x ( 0 ) ( k ) x ( 0 ) ( k − 1 ) ( k = 2 , 3 , … , n ) \sigma(k)=\frac{x^{(0)}(k)}{x^{(0)}(k-1)}\left(k=2,3,\ldots,n\right) σ(k)=x(0)(k1)x(0)(k)(k=2,3,,n)

再根据预测发展系数 ( − a ^ ) (-\hat{a}) (a^) 计算级比偏差和平均级比偏差
η ( k ) = ∣ 1 − 1 − 0.5 a ^ 1 + 0.5 a ^ 1 σ ( k ) ∣ , η ‾ = ∑ k = 2 n η ( k ) / ( n − 1 ) \eta(k)=\left|1-\frac{1-0.5\hat{a}}{1+0.5\hat{a}}\frac{1}{\sigma(k)}\right|,\:\overline{\eta}=\sum_{k=2}^{n}\eta(k)/(n-1) η(k)= 11+0.5a^10.5a^σ(k)1 ,η=k=2nη(k)/(n1)
如果 η ˉ < 0.2 \bar{\eta}<0.2 ηˉ<0.2,则认为模型对原数据拟合达到一般要求; η ˉ < 0.1 \bar{\eta}<0.1 ηˉ<0.1,则认为模型对原数据拟合效果非常不错

三、代码实现----Matlab

级比检验代码

clear;clc
year =[1995:1:2004]';  % 横坐标表示年份,写成列向量的形式
x0 = [174,179,183,189,207,234,220.5,256,270,285]';  %原始数据序列,写成列向量的形式n = size(x0,1);
x1 = zeros(n,1);
for i = 1:nx1(i) = sum(x0(1:i,1));
end% 级比检验
rho = zeros(n,1);
for i = 2:nrho(i) = x0(i) / x1(i-1);
end
figure(2)
plot(year(2:n,1),rho(2:n,1),'o-',[year(2),year(n)],[0.5,0.5],'-'); grid on;
text(year(end-1)+0.2,0.55,'临界线')   % 在坐标(year(end-1)+0.2,0.55)上添加文本
set(gca,'xtick',year(2:1:end))  % 设置x轴横坐标的间隔为1
xlabel('年份');  ylabel('原始数据的光滑度');  % 给坐标轴加上标签
% 指标1:光滑比小于0.5的数据占比
num1 = sum(rho<0.5)/(n-1)
% 指标2:除去前两个时期外,光滑比小于0.5的数据占比
num2 = sum(rho(3:end)<0.5)/(n-3)

运行结果:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
参考标准:指标1一般要大于60%, 指标2要大于90%,所以通过了级比检验。

模型求解代码

function [result, x0_hat, relative_residuals, eta] = gm11(x0, predict_num)n = size(x0,1);x1 = cumsum(x0);z1 = 0.5 * x1(2:end) + 0.5 * x1(1:n-1,1)y = x0;x = z1;[b,bint,r,rint,stats]=regress(y, x);  % 调用一元线性回归函数求解a和ua = -b(1);u = b(2);x0_hat = zeros(n,1);x0_hat(1) = x0(1);for m = 1: n-1x0_hat(m+1) = (1-exp(a))*(x0(1)-u/a)*exp(-a*m);endresult = zeros(predict_num,1);  % 初始化用来保存预测值的向量for i = 1: predict_numresult(i) = (1-exp(a))*(x0(1)-u/a)*exp(-a*(n+i-1)); % 带入公式直接计算end% 计算绝对残差和相对残差absolute_residuals = x0(2:end) - x0_hat(2:end);   % 从第二项开始计算绝对残差,因为第一项是相同的relative_residuals = abs(absolute_residuals) ./ x0(2:end);  % 计算相对残差% 计算级比和级比偏差class_ratio = x0(2:end) ./ x0(1:end-1) ;  % 计算级比eta = abs(1-(1-0.5*a)/(1+0.5*a)*(1./class_ratio));  % 计算级比偏差
end
% 函数作用:使用传统的GM(1,1)模型对数据进行预测
%     x0:要预测的原始数据
%     predict_num: 向后预测的期数% 输出变量
%     result:预测值
%     x0_hat:对原始数据的拟合值
%     relative_residuals: 对模型进行评价时计算得到的相对残差
%     eta: 对模型进行评价时计算得到的级比偏差

调用模型求解代码进行预测

if num1 > 0.6 && num2 > 0.9if n > 7    % 将数据分为训练组和试验组(根据原数据量大小n来取,n小于7则取最后两年为试验组,n大于7则取最后三年为试验组)test_num = 3;elsetest_num = 2;endtrain_x0 = x0(1:end-test_num);  % 训练数据disp('训练数据是: ')disp(mat2str(train_x0'))  % mat2str可以将矩阵或者向量转换为字符串显示test_x0 =  x0(end-test_num+1:end); % 试验数据disp('试验数据是: ')disp(mat2str(test_x0'))% 使用GM(1,1)模型对训练数据进行训练disp('GM(1,1)模型预测')result1 = gm11(train_x0, test_num); %预测后test_num期的结果% 绘制对试验数据进行预测的图形test_year = year(end-test_num+1:end);  % 试验组对应的年份figure(3)plot(test_year,test_x0,'o-',test_year,result1,'*-'); grid on;set(gca,'xtick',year(end-test_num+1): 1 :year(end))legend('试验组的真实数据','GM(1,1)预测结果') xlabel('年份');  ylabel('排污总量');  % 给坐标轴加上标签predict_num = input('请输入你要往后面预测的期数: ');% 计算使用传统GM模型的结果[result, x0_hat, relative_residuals, eta] = gm11(x0, predict_num);%% 绘制相对残差和级比偏差的图形figure(4)subplot(2,1,1)  % 绘制子图(将图分块)plot(year(2:end), relative_residuals,'*-'); grid on;   % 原数据中的各时期和相对残差legend('相对残差'); xlabel('年份');set(gca,'xtick',year(2:1:end))  % 设置x轴横坐标的间隔为1subplot(2,1,2)plot(year(2:end), eta,'o-'); grid on;   % 原数据中的各时期和级比偏差legend('级比偏差'); xlabel('年份');set(gca,'xtick',year(2:1:end))%% 残差检验average_relative_residuals = mean(relative_residuals);  % 计算平均相对残差 mean函数用来均值disp(strcat('平均相对残差为',num2str(average_relative_residuals)))%% 级比偏差检验average_eta = mean(eta);   % 计算平均级比偏差disp(strcat('平均级比偏差为',num2str(average_eta)))%% 绘制最终的预测效果图figure(5) plot(year,x0,'-o',  year,x0_hat,'-*m',  year(end)+1:year(end)+predict_num,result,'-*b' );   grid on;hold on;plot([year(end),year(end)+1],[x0(end),result(1)],'-*b')legend('原始数据','拟合数据','预测数据')  set(gca,'xtick',[year(1):1:year(end)+predict_num])  xlabel('年份');  ylabel('排污总量');  
end

运行结果:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

可以看出:平均相对残差为:0.025999 < 10 %
级比偏差为 0.047041 < 0.1 拟合效果非常不错

这篇关于【学习笔记】灰色预测 GM(1,1) 模型 —— Matlab的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097608

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验