【炼丹经验积累(一)】梯度消失 学习率自动调节 附代码

2024-08-22 19:44

本文主要是介绍【炼丹经验积累(一)】梯度消失 学习率自动调节 附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述

  • 对 stable diffusion 3 进行 ip-adapter 微调,正常训练 2 w 步后,loss 出现不稳定状态,并出现 Not a number
  • 问题定位:由于 loss 并没有变成无限大(梯度爆炸),那么应该是梯度消失。
    在这里插入图片描述

解决方案

  1. 降低学习率
  • 参考 huggingface 官方论坛1,其中有用户提到:“我也遇到过几次了。就我而言,我能够通过降低学习率来解决这个问题,但你的学习率已经很低了,所以不幸的是,我不太确定。”
  • 该博客中的学习率已经是 learning_rate=1e-6,而本文的情况是 1e-4 会在 200步 nan,8e-05 会在 600步 nan,降到 1e-5 稳定训练很长时间后,一觉醒来,发现在 2 w 步之后出现 nan 🫠
  1. 自动调节学习率

自动调节学习率的方式很多2,本文先从最简单地尝试起来,即“线性调节”

(1)先 warm up,在前 1/10 个训练步中,学习率从 0 调节到设定的 1e-5
(2)再衰减,在后续的训练步中,线性地从 1e-5 逐渐减为 0

线性调节学习率代码

# S-TODO 学习率调节器 lr_scheduler refer to https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.LambdaLR.html#torch.optim.lr_scheduler.LambdaLRfrom torch.optim.lr_scheduler import LambdaLRdef get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):def lr_lambda(current_step):if current_step < num_warmup_steps:return float(current_step) / float(max(1.0, num_warmup_steps))return max(0.0, float(num_training_steps - current_step) / float(max(1.0, num_training_steps - num_warmup_steps)))return LambdaLR(optimizer, lr_lambda, last_epoch)
...optimizer = torch.optim.AdamW(xxx)# dataloadertrain_dataset = MyDataset(xxx)train_dataloader = torch.utils.data.DataLoader(xxx)# S-TODO Define the 学习率 的 schedulernum_training_steps = len(train_dataloader) * args.num_train_epochsnum_warmup_steps = int(0.1 * num_training_steps)  # 10% warmupscheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps)
...
训练代码
...# Backpropagateaccelerator.backward(loss)optimizer.step()# 更新下一步的学习率scheduler.step() optimizer.zero_grad()
...

  1. https://discuss.huggingface.co/t/text-to-image-training-loss-becomes-nan-all-of-a-sudden/35224 ↩︎

  2. https://datawhalechina.github.io/thorough-pytorch/%E7%AC%AC%E5%85%AD%E7%AB%A0/6.2%20%E5%8A%A8%E6%80%81%E8%B0%83%E6%95%B4%E5%AD%A6%E4%B9%A0%E7%8E%87.html ↩︎

这篇关于【炼丹经验积累(一)】梯度消失 学习率自动调节 附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097221

相关文章

SpringBoot+Docker+Graylog 如何让错误自动报警

《SpringBoot+Docker+Graylog如何让错误自动报警》SpringBoot默认使用SLF4J与Logback,支持多日志级别和配置方式,可输出到控制台、文件及远程服务器,集成ELK... 目录01 Spring Boot 默认日志框架解析02 Spring Boot 日志级别详解03 Sp

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪