【炼丹经验积累(一)】梯度消失 学习率自动调节 附代码

2024-08-22 19:44

本文主要是介绍【炼丹经验积累(一)】梯度消失 学习率自动调节 附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述

  • 对 stable diffusion 3 进行 ip-adapter 微调,正常训练 2 w 步后,loss 出现不稳定状态,并出现 Not a number
  • 问题定位:由于 loss 并没有变成无限大(梯度爆炸),那么应该是梯度消失。
    在这里插入图片描述

解决方案

  1. 降低学习率
  • 参考 huggingface 官方论坛1,其中有用户提到:“我也遇到过几次了。就我而言,我能够通过降低学习率来解决这个问题,但你的学习率已经很低了,所以不幸的是,我不太确定。”
  • 该博客中的学习率已经是 learning_rate=1e-6,而本文的情况是 1e-4 会在 200步 nan,8e-05 会在 600步 nan,降到 1e-5 稳定训练很长时间后,一觉醒来,发现在 2 w 步之后出现 nan 🫠
  1. 自动调节学习率

自动调节学习率的方式很多2,本文先从最简单地尝试起来,即“线性调节”

(1)先 warm up,在前 1/10 个训练步中,学习率从 0 调节到设定的 1e-5
(2)再衰减,在后续的训练步中,线性地从 1e-5 逐渐减为 0

线性调节学习率代码

# S-TODO 学习率调节器 lr_scheduler refer to https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.LambdaLR.html#torch.optim.lr_scheduler.LambdaLRfrom torch.optim.lr_scheduler import LambdaLRdef get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):def lr_lambda(current_step):if current_step < num_warmup_steps:return float(current_step) / float(max(1.0, num_warmup_steps))return max(0.0, float(num_training_steps - current_step) / float(max(1.0, num_training_steps - num_warmup_steps)))return LambdaLR(optimizer, lr_lambda, last_epoch)
...optimizer = torch.optim.AdamW(xxx)# dataloadertrain_dataset = MyDataset(xxx)train_dataloader = torch.utils.data.DataLoader(xxx)# S-TODO Define the 学习率 的 schedulernum_training_steps = len(train_dataloader) * args.num_train_epochsnum_warmup_steps = int(0.1 * num_training_steps)  # 10% warmupscheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps)
...
训练代码
...# Backpropagateaccelerator.backward(loss)optimizer.step()# 更新下一步的学习率scheduler.step() optimizer.zero_grad()
...

  1. https://discuss.huggingface.co/t/text-to-image-training-loss-becomes-nan-all-of-a-sudden/35224 ↩︎

  2. https://datawhalechina.github.io/thorough-pytorch/%E7%AC%AC%E5%85%AD%E7%AB%A0/6.2%20%E5%8A%A8%E6%80%81%E8%B0%83%E6%95%B4%E5%AD%A6%E4%B9%A0%E7%8E%87.html ↩︎

这篇关于【炼丹经验积累(一)】梯度消失 学习率自动调节 附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097221

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识