判断两条直线的位置关系

2024-08-22 12:48

本文主要是介绍判断两条直线的位置关系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在看任意两个多边形的交并比。
开始自己想办法,花了两天时间,进展比较缓慢。情况越想越多,越来越不可控。于是只有求助与度娘了。虽然还是有些问题,但问题还是慢慢的有些好转,其中一点心青大神的博客中提到的想法和源码,给了我很大启示。
求两条直线的位置关系中, 大神是用的向量的想法,思路很新颖,但是我有点一知半解,c++转的python代码运行也有点问题, 于是我老老实实的在网上补习了一下直线的位置关系, 并用一般表达式做了实现。
其中线段的关系,我分为以下五种:

lines_status = ['coll', 'para','ins', 'coll_on', 'ins_on']
#'coll': 共线, 没有重合
#'para': 平行
#'ins':  所在的直线相交, 没有交点
#'coll_on' 共线,有重合部分, 可能重合的交点或者一段线段
#'ins_on' 所在直线相交, 两个线段有交点
#---------------------------------------
#func: get_2line_status
#info: 获取两条线段的关系
#return: ["condition", [[point1],[point2]]]
#	
#	condition:
#		'coll': 共线, 没有重合, 返回直没有point1和point2
#		'para': 平行, 返回直没有point1和point2
#		'ins':  所在的直线相交, 没有交点, 返回直中有延长线的交点point1
#		'coll_on' 共线,有重合部分, 可能重合的交点或者一段线段, 如果只重合了端点,则返回point1, 如果重合一段线段, 则返回直中有point1和point2
#		'ins_on' 所在直线相交, 两个线段有交点,则返回point1
#---------------------------------------
def get_2line_status(line1, line2):x1,y1 = line1[0]x2,y2 = line1[1]x3,y3 = line2[0]x4,y4 = line2[1]# 直线表达式ax +by +c =0a = y2-y1b = x1-x2 c = x2*y1 -x1*y2 # 直线表达式ex +fy +g =0e = y4-y3f = x3-x4 g = x4*y3 -x3*y4 # 斜率相等if b*e == a*f: if c*f == g*b and c*e == g*a: #c/b == g/f(能用乘法就不用除法): # 共线if (x1-x3) == 0 or (x1-x4) == 0: coll_=[[x1,y1]] #共点elif (x1-x3)*(x1-x4) < 0:  #有公共线段coll_= [[x1,y1]]if (x1-x3)*(x1-x2) > 0: coll_.append([x3,y3])else: coll_.append([x4,y4])elif (x2-x3) == 0 or (x2-x4) == 0: coll_=[[x2,y2]] #共点elif (x2-x3)*(x2-x4) < 0: #有公共线段coll_= [[x2,y2]]if (x2-x3)*(x2-x1) > 0: coll_.append([x3,y3])else: coll_.append([x4,y4])else:  return ['coll']return ['coll_on', coll_]else:return ['para']#斜率不等时,计算y轴交点if a != 0 and e != 0:yi = (a*g-e*c)/(b*e-a*f)elif a == 0:yi = -c/b else :yi = -g/f #斜率不等时,计算x轴交点if b != 0 and f != 0:xi = (b*g-f*c)/(a*f-b*e)elif b == 0:xi = -c/a else :xi = -g/e # 判断交点是否在直线上if point_in_segment((xi,yi),line1) \and point_in_segment((xi,yi),line2):return ['ins_on', [[xi,yi]]]else: return ['ins', [[xi,yi]]]

恩恩,开源时代,希望对大家有所帮助。

这篇关于判断两条直线的位置关系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096323

相关文章

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

zoj 1721 判断2条线段(完全)相交

给出起点,终点,与一些障碍线段。 求起点到终点的最短路。 枚举2点的距离,然后最短路。 2点可达条件:没有线段与这2点所构成的线段(完全)相交。 const double eps = 1e-8 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;

POJ1269 判断2条直线的位置关系

题目大意:给两个点能够确定一条直线,题目给出两条直线(由4个点确定),要求判断出这两条直线的关系:平行,同线,相交。如果相交还要求出交点坐标。 解题思路: 先判断两条直线p1p2, q1q2是否共线, 如果不是,再判断 直线 是否平行, 如果还不是, 则两直线相交。  判断共线:  p1p2q1 共线 且 p1p2q2 共线 ,共线用叉乘为 0  来判断,  判断 平行:  p1p

Codeforces Round #113 (Div. 2) B 判断多边形是否在凸包内

题目点击打开链接 凸多边形A, 多边形B, 判断B是否严格在A内。  注意AB有重点 。  将A,B上的点合在一起求凸包,如果凸包上的点是B的某个点,则B肯定不在A内。 或者说B上的某点在凸包的边上则也说明B不严格在A里面。 这个处理有个巧妙的方法,只需在求凸包的时候, <=  改成< 也就是说凸包一条边上的所有点都重复点都记录在凸包里面了。 另外不能去重点。 int

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

【408DS算法题】039进阶-判断图中路径是否存在

Index 题目分析实现总结 题目 对于给定的图G,设计函数实现判断G中是否含有从start结点到stop结点的路径。 分析实现 对于图的路径的存在性判断,有两种做法:(本文的实现均基于邻接矩阵存储方式的图) 1.图的BFS BFS的思路相对比较直观——从起始结点出发进行层次遍历,遍历过程中遇到结点i就表示存在路径start->i,故只需判断每个结点i是否就是stop

linux 判断某个命令是否安装

linux 判断某个命令是否安装 if ! [ -x "$(command -v git)" ]; thenecho 'Error: git is not installed.' >&2exit 1fi

Linux Centos 迁移Mysql 数据位置

转自:http://www.tuicool.com/articles/zmqIn2 由于业务量增加导致安装在系统盘(20G)磁盘空间被占满了, 现在进行数据库的迁移. Mysql 是通过 yum 安装的. Centos6.5Mysql5.1 yum 安装的 mysql 服务 查看 mysql 的安装路径 执行查询 SQL show variables like

PDFQFZ高效定制:印章位置、大小随心所欲

前言 在科技编织的快节奏时代,我们不仅追求速度,更追求质量,让每一分努力都转化为生活的甜蜜果实——正是在这样的背景下,一款名为PDFQFZ-PDF的实用软件应运而生,它以其独特的功能和高效的处理能力,在PDF文档处理领域脱颖而出。 它的开发,源自于对现代办公效率提升的迫切需求。在数字化办公日益普及的今天,PDF作为一种跨平台、不易被篡改的文档格式,被广泛应用于合同签署、报告提交、证书打印等各个

读软件设计的要素04概念的关系

1. 概念的关系 1.1. 概念是独立的,彼此间无须相互依赖 1.1.1. 一个概念是应该独立地被理解、设计和实现的 1.1.2. 独立性是概念的简单性和可重用性的关键 1.2. 软件存在依赖性 1.2.1. 不是说一个概念需要依赖另一个概念才能正确运行 1.2.2. 只有当一个概念存在时,包含另一个概念才有意义 1.3. 概念依赖关系图简要概括了软件的概念和概念存在的理